PROGRAMMABLE CONTROLLER EPFP Σ

User's Manual

[Applicable PLC]
FPE Control units

- FPG - C 32T
- FPG-C32T2
- FPG-C 24R2

[^0]
Table of Contents

Before You Start viii
Programming Tool Restrictions xi
Compatibility with the FP0 xii
Chapter 1 Functions and Restrictions of the Unit
1.1 Features and Functions of the Unit 1-3
1.2 Unit Types 1-6
1.2.1 FP Σ Control Unit 1-6
1.2.2 FP Σ Expansion Unit 1-6
1.2.3 Units for FPO and FP Σ 1-6
1.2.4 Communication Cassette 1-6
1.3 Restrictions on Unit Combinations 1-7
1.3.1 Restrictions on the Number of Expansion Units (for FPO expansion unit) 1-7
1.3.2 Restrictions on the Number of Units for Expansion (for FP Σ expansion unit) 1-8
1.4 Programming Tools 1-9
1.4.1 Tools Needed for P rogramming 1-9
1.4.2 Software Environment and Suitable Cable 1-9
Chapter 2 Specifications and Functions of Control Unit
2.1 Parts and Functions 2-3
2.1.1 Parts and Functions 2-3
2.1.2 Tool Port Specification 2-6
2.1.3 Communication Cassette 2-6
2.2 Input and Output Specifications 2-7
2.2.1 Input Specifications 2-7
2.2.2 Output Specifications 2-9
2.3 Terminal Layout Diagram 2-12
2.3.1 Control Unit (for C32T and C32T2) 2-12
2.3.2 Control Unit (for C24R2) 2-12
Chapter 3 Expansion
3.1 Type of Expansion Unit 3-3
3.2 Expansion Method of Units for FPO and FPE 3-4
3.3 Expansion Method of FP Σ Expansion Unit 3-5
3.4 Specifications of FP Σ Expansion Unit 3-6
3.4.1 FP Σ Expansion I/O Unit 3-6
Chapter 4 I/O Allocation
4.1 I/O Allocation 4-3
4.1.1 I/O Number of FP Σ Control Unit 4-3
4.1.2 I/O Number of FP Σ Expansion Unit (for left side expansion) 4-4
4.1.3 I/O Number of FPO Expansion Unit (for right side expansion) 4-5
4.1.4 I/O Number of FPO Analog I/O Unit (for right side expansion) 4-5
4.1.5 I/O Number of FPO A/D Conversion Unit (for right side expansion) 4-5
4.1.6 I/O Number of FPO I/O Link Unit (for right side expansion) 4-6
Chapter 5 Installation and Wiring
5.1 Installation 5-3
5.1.1 Installation Environment and Space 5-3
5.1.2 Installation and Removal 5-6
5.2 W iring of Power Supply 5-9
5.2.1 Wiring of Power Supply 5-9
5.2.2 Grounding 5-11
5.3 Wiring of Input and Output 5-12
5.3.1 Input Wiring 5-12
5.3.2 Output Wiring 5-15
5.3.3 Precautions Regarding Input and Output Wirings 5-16
5.4 Wiring of MIL Connector Type 5-17
5.5 Wiring of Terminal Block Type 5-20
5.6 Safety Measures 5-22
5.6.1 Safety Measures 5-22
5.6.2 Momentary Power Failures 5-23
5.6.3 Protection of Power Supply and Output Sections 5-23
5.7 Backup Battery 5-24
5.7.1 Installation of Backup Battery 5-24
5.7.2 System Register Setting 5-25
5.7.3 Lifetime of Backup Battery 5-26
Chapter 6 High-speed Counter and Pulse Output Functions
6.1 Overview of Each Functions 6-3
6.1.1 Three Functions that Use Built-in High-speed Counter 6-3
6.1.2 Performance of Built-in High-speed Counter 6-4
6.2 Function Specifications and Restricted Items 6-5
6.2.1 Table of Specifications 6-5
6.2.2 Function being Used and Restrictions 6-7
6.2.3 Booting Time 6-9
6.3 High-speed Counter Function 6-10
6.3.1 Overview of High-speed Counter Function 6-10
6.3.2 Types of Input Modes 6-10
6.3.3 Min. Input Pulse Width 6-12
6.3.4 I/O Allocation 6-12
6.3.5 Instructions Used with High-speed Counter F unction 6-13
6.3.6 Sample Program 6-16
6.4 Pulse Output Function 6-20
6.4.1 Overview of P ulse Output Function 6-20
6.4.2 Types of Pulse Output Method 6-21
6.4.3 I/O Allocation 6-22
6.4.4 Control Mode 6-23
6.4.5 Instructions Used with Pulse Output F unction 6-24
6.4.6 Sample Program for Positioning Control 6-43
6.5 PWM Output Function 6-56
6.5.1 Overview of PWM O utput F unction 6-56
6.5.2 Instruction Used with PWM Output F unction 6-56
Chapter 7 Communication Cassette
7.1 Communication Functions of $\mathrm{FP} \Sigma$ 7-3
7.1.1 Functions of Communication Cassette 7-3
7.2 Communication Cassette 7-6
7.2.1 Type of Communication Cassette 7-6
7.2.2 Names and Principle Applications of the Ports 7-7
7.2.3 Communication Specifications of Communication Cassette 7-8
7.3 Attachment of Communication Cassette 7-10
7.3.1 Attachment Procedure 7-10
7.4 Wiring of Communication Cassette 7-11
7.4.1 Wiring the Connector with the Communication Cassette 7-11
7.4.2 Tool for Tightening Communication Connector Terminal Block 7-12
7.4.3 Wiring Method 7-12
7.4.4 Cautions Regarding Wiring 7-12
Chapter 8 Communication Function 1 Computer Link
8.1 Computer Link 8-3
8.1.1 Overview of Function 8-3
8.1.2 Explanation of Operation when Using a Computer Link 8-4
8.1.3 Format of Command and Response 8-5
8.1.4 Types of Commands that Can Be Used 8-8
8.1.5 Setting the Communication Parameters when
Using a Computer Link 8-10
8.1.6 Restriction 8-10
8.2 Connection Example with External Device 8-11
8.2.1 Connection Example with External Device (1:1 communication with computer) 8-11
8.2.2 Connection Example with External Device (1:1 communication with programmable display "GT10/GT30") 8-14
8.3 Computer Link (1:N communication) 8-18
8.3.1 Overview of 1:N Communication 8-18
8.3.2 Communication Cassette Used for 1:N Communication 8-18
8.3.3 Settings of System Register and Unit No. 8-19
8.3.4 Connection with External Device 8-22
Chapter 9 Communication Function 2 General-purpose Serial Communication
9.1 General-purpose Serial Communication 9-3
9.1.1 Overview of Function 9-3
9.1.2 Program of General-purpose Serial Communication 9-5
9.1.3 Communication Parameter Settings when Using General-purpose Serial Communications 9-6
9.2 Overview of Communication with External Devices 9-8
9.2.1 Data Transmission to External Device 9-8
9.2.2 Receiving Data from External Device 9-12
9.3 Connection Example with External Devices 9-16
9.3.1 Connection Example with External Device (1:1 communication with Micro-Imagechecker) 9-16
9.3.2 Connection Example with External Device (1:1 communication with FP series PLC) 9-22
9.4 Data Transmitted and Received with the FP Σ 9-29
9.5 1:N Communication 9-31
9.5.1 Overview of 1:N Communication 9-31
9.5.2 Communication Cassette Used with 1 : N Communication 9-31
9.5.3 Setting of System Register 9-32
9.6 Flag Operations When Using Serial Communication 9-33
9.6.1 When "STX not exist" is Set for Start Code and "CR" is Set for End Code 9-33
9.6.2 When "STX" is Set for Start Code and "ETX" is Set for End Code 9-35
9.7 Changing the Communication Mode of COM. Port 9-37
Chapter 10 Communication Function 3 PLC Link Function
10.1 PLC Link 10-3
10.1.1 Overview of F unction 10-3
10.2 Communication Parameter Settings 10-5
10.2.1 Setting of Communication Mode 10-5
10.2.2 Setting of Unit No. 10-6
10.2.3 Allocation of Link Relay and Link Register 10-10
10.2.4 Setting the Largest Station Number for a PLC Link 10-16
10.3 Monitoring When a PLC Link is Being Used 10-17
10.3.1 Monitoring Using Relays 10-17
10.4 Connection Example of PLC Link 10-18
10.4.1 Using a PLC Link with Three FP Σ Units 10-18
10.4.2 Sample Programs 10-21
10.5 PLC Link Response Time 10-22
10.5.1 PLC Link Response Time 10-22
10.5.2 Shortening the Transmission Cycle Time When There are Stations That Have not been Added to the Link 10-25
10.5.3 Error Detection Time for Transmission Assurance Relays 10-26

Chapter 11 Other Functions

11.1 Analog Potentiometer 11-3
11.1.1 Overview of Analog Potentiometer 11-3
11.1.2 Example Showing How the Analog Potentiometers are Used 11-3
11.2 Clock/Calendar Function 11-4
11.2.1 Area for Clock/Calendar Function 11-4
11.2.2 Setting of Clock/Calendar Function 11-4
11.2.3 Precautions Concerning Backup of Clock/Calendar Data 11-5
11.2.4 Example Showing the Clock/Calendar being Used 11-6
Chapter 12 Self-Diagnostic and Troubleshooting
12.1 Self-Diagnostic Function 12-3
12.1.1 LED Display for Status Condition 12-3
12.1.2 Operation on Error 12-4
12.2 Troubleshooting 12-5
12.2.1 If the ERROR/ALARM LED Flashes 12-5
12.2.2 If the ERROR/ALARM LED Lights 12-7
12.2.3 If None of the LEDs Light 12-7
12.2.4 If Outputting does not Occur as Desired 12-8
12.2.5 If a Protect Error Message Appears 12-10
12.2.6 If the Program Mode does not Change to RUN 12-10
12.2.7 If a Transmission Error has Occurred 12-11
Chapter 13 Specifications
13.1 Table of Specifications 13-3
13.1.1 General Specifications 13-3
13.1.2 Performance Specifications 13-5
13.2 I/O No. Allocation 13-10
13.3 Relays, Memory Areas and Constants 13-12
13.4 Table of System Registers 13-14
13.4.1 System Registers 13-14
13.4.2 Table of System R egisters 13-16
13.5 Table of Special Internal Relays 13-21
13.6 Table of Special Data Registers 13-28
13.7 Table of E rror Cords 13-42
13.7.1 Table of Syntax Check E rror 13-42
13.7.2 Table of Self-Diagnostic E rror 13-43
13.8 Table of Instructions 13-44
13.9 MEWTOCOL-COM Communication Commands 13-66
13.10 Hexadecimal/B inary/BCD 13-67
13.11 ASCII Codes 13-68
13.12 Dimensions 13-69
13.12.1 C ontrol Unit 13-69
13.12.2 Expansion Unit 13-70
Index I-1
Record of changes R-1

Before You Start

Installation environment

Do not use the FP Σ unit where it will be exposed to the following:

- Direct sunlight and ambient temperatures outside the range of 0_C to 55_C/32_F to 131_F.
- Ambient humidity outside the range of 30% to 85% RH and sudden temperature changes causing condensation.
- Inflammable or corresive gas.
- Excessive vibration or shock.
- Excessive airborne dust, metal particles or salts.
- Water or oil in any from including spray or mist.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges.

Static electricity

- Before touching the unit, always touch a grounded piece of metal in order to discharge static electricity.
- In dry locations, excessive static electricity can cause problems.

Cleaning

- Do not use thinner based cleaners because they deform the unit case and fade the colors.

Power supplies

- An insulated power supply with an internal protective circuit should be used. The power supply for the control unit operation is a non-insulated circuit, so if an incorrect voltage is directly applied, the internal circuit may be damaged or destroyed.
- If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.

Power supply sequence

- Have the power supply sequence such that the power supply of the control unit turns off before the power supply for input and output.
- If the power supply for input and output is turned off before the power supply of the control unit, the control unit will detect the input fluctuations and may begin an unscheduled operation.

Before turning on the power
When turning on the power for the firsttime, be sure to take the precautions given below.

- When performing installation, check to make sure that there are no scraps of wiring, particularly conductive fragments, adhering to the unit.
- Verify that the power supply wiring, I/O wiring, and power supply voltage are all correct.
- Sufficiently tighten the installation screws and terminal screws.
- Set the mode selector to PROG. mode.

Before entering a program
Be sure to perform a program clear operation before entering a program.
Operation procedure when using FPWIN GR Ver. 2
Procedure:

1. Select "Online Edit Mode" on the FPWIN GR "On line" menu.
2. Select "Clear Program" on the "Edit" menu.
3. When the confirmation dialog box is displayed, click on "Yes" to clear the program.

Request concerning program storage

To prevent the accidental loss of programs, the user should consider the following measures.

- Drafting of documents

To avoid accidentally losing programs, destroying files, or overwriting the contents of a file, documents should be printed out and then saved.

- Specifying the password carefully

The password setting is designed to avoid programs being accidentally overwritten. If the password is forgotten, however, it will be impossible to overwrite the program even if you want to. Also, if a password is forcibly bypassed, the program is deleted. When specifying the password, note it in the specifications manual or in another safe location in case it is forgotten at some point.

Programming Tool Restrictions

Type of programming tool		Instruction used/function restrictions
Windows software Conforms to IEC61131-3	FPWIN Pro Ver.4	All instructions and functions can be used.
Windows software	FPWIN GR Ver.2	
	FPWIN GR Ver.1	Not used
MS -DOS software	NPST-GR Ver.4	Not used
	NPST-GR Ver.3	
Handy programming unit (FP programmer)	AFP1114V2	AFP1114
	AFP1112A AFP1112	Not used

Notes

Precautions concerning programming tools

- Programming tools used with the FP Σ require FPWIN Pro Ver. 4 or later or Ver. 2 or a subsequent version of the FPWIN GR. Please be aware that other tools cannot be used.
- Either "FPWIN Pro Ver.4.1 or later" or "FP WIN GR Ver. 2.1 or later" are necessary for use the C32T2 and C24R 2 types control unit.

Compatibility with the FPO

Program compatibility

The following points require attention if using FP0 programs on the FP Σ.

- Pulse output function

With the FP Σ, please be aware that the following changes
have been made to instructions concerning pulse output.

Instruction	For the FP0	For the FP Σ
Trapezoidal control	F168 (SPD1)	F171 (SPDH)
J og feed	F169 (PLS)	F172 (PLSH)
Data table control	None	F174 (SP0H)
Linear interpolation control	None	F175 (SPSH)
Circular interpolation control	None	F176 (SPCH)
PWM output	F170 (PWM)	F173 (PWMH)

* Linear and circular interpolation control can be used only with the FP Σ C ontrol Unit C32T2.

- Serial data communication function

With the FP Σ, please be aware that the following changes
have been made to instructions concerning serial data communication.

Instruction	For the FP0	For the FP Σ
Serial data communication	F144 (TRNS)	F159 (MTRN)

* The F 159 (MTRN) instruction is used only with an FP Σ in which the conventional F144 (TRNS) instruction has been set up to correspond to multiple communication ports. Please be aware that the conventional F144 (TRNS) instruction cannot be used with the FP Σ.

Chapter 1

Functions and Restrictions of the Unit

1.1 Features and Functions of the Unit 1-3
1.2 Unit Types 1-6
1.3 Restrictions on Unit Combinations 1-7
1.4 Programming Tools 1-9

1.1 Features and Functions of the Unit

Powerful control capabilities

All of the functions of a mid-scale PLC are packed into the compact body size of the 32 - point type FP0. A program capacity of 12 k steps is provided as a standard feature, so you never have to worry about how much memory is left as you're programming. In addition, 32 k words are reserved for data registers, so large volumes of data can be compiled and multiple operations can be processed without running out of memory.

A full range of communication functions

Using the Tool port (RS232C) provided as a standard feature on the main unit, communication can be carried out with a display panel or computer. Additionally, communication cassettes with RS232C and RS485 interfaces are available as an option. Installing a 2 -channel R S232C type communication cassette in the FP Σ makes it possible to connect two devices with RS232C port. A full lineup of communication functions means you can also work with 1:N communication and PLC link function (up to 16 units).

Controlling two devices with RS232C port with one FPS

When using the 2 -channel RS232C type communication cassette

Figure 1: Features-communication (RS232C)
1:N communication possible with up to 99 stations (units)
When using the 1 -channel RS485 type communication cassette

Figure 2: Features-communication (C-NET)

* next page

Data can be shared among the various PLCs using the PLC link function.

When using the 1-channel RS485 type communication cassette

Data can be shared among up to 16 FP Σ units using the PLC link function.

Figure 3: Features-communication (PLC link)

Positioning control supported through high-speed counter and pulse output

A high-speed counter and pulse output functions are provided as standard features. The pulse output function supports frequencies of up to 100 kHz , enabling positioning control using a stepping motor or servo motor.

Measurement using high-speed counter supported

Increment input mode, decrement input mode, 2 -phase input mode, individual input mode, and direction discrimination mode are supported.

Single phase: Max. 50 kHz, Two-phase: Max. 20 kHz

Figure 4: Features-High-speed counter

Positioning control based on pulse output supported

CW/CCW and Pulse/sign outputs are supported.
1-channel: Max. 100 kHz, 2-channel: Max. 60 kHz

Figure 5: Features-Pulse output

Analog control supported

An analog potentiometer (volume dial) is provided as a standard feature. This can be used in applications such as analog timers, without using the programming tools. An analog unit is also available as the intelligent unit.

1.2 Unit Types

This section explains the type of unit used with the FPE and about the optional communication cassette.

1.2.1 FP Σ Control Unit

Name	Number of I/O points	Part No.	Product No.
FP Σ Control unit	Input: 16 points/Transistor output: 16 points	FPG -C32T	AFPG2543
	Input: 16 points/Transistor output: 16 points	FPG -C32T2	AFPG2643
	Input: 16 points/Relay output: 8 points	FPG -C24R2	AFPG2423

1.2.2 FP Σ Expansion Unit

Name	Number of I/O points	Part No.	Product No.
FP Σ expansion I/O unit	Input: 32 points/Transistor output: 32 points	FPG -XY64D2T	AFPG3467

* The FP Σ expansion I/O unit can be used for "FPG-C32T2 and FPG-C24R2" FP Σ control units.

1.2.3 Units for FPO and FP Σ

The FPE can be used the FPO series expansion I/O unit, power supply unit, and intelligent unit.

1.2.4 Communication Cassette

A detachable communication cassette (optional) should be used when using the various functions such as the computer link, serial data communication, and PLC link functions.

Name	Description	Part No.	Product No.
FP Σ Communication cassette 1-channel RS232C type	This communication cassette is a 1-channel unit with a five-wire RS232C port. It supports $1: 1$ computer links and general-purpose serial communication. RS/ CS control is possible.	FPG-COM1	AFPG801
FP Σ Communication cassette 2-channel RS232C type	This communication cassette is a 2-channel unit with a three-wire RS232C port. It supports $1: 1$ computer links and general-purpose serial communication. Communication with two external devices is possible.	FPG-COM2	AFPG802
FP Σ Communication cassette 1-channel RS485 type	This communication cassette is a 1-channel unit with a two-wire RS 485 port. It supports 1 : N computer links (C-NET), general- purpose serial communication, and a PLC link.	FPG-COM3	AFPG803

1.3 Restrictions on Unit Combinations

This section contains restrictions on unit combinations.

1.3.1 Restrictions on the Number of Expansion Units (for FPO expansion unit)

Figure 6: Restriction on unit combinations
Up to three expansion units can be added at the right of the FP Σ, these expansion units being either expansion units or intelligent units from the earlier FP0 series, or a combination of the two.
There are no restrictions on the type and the order in which expansion units are installed. A combination of relay output types and transistor output types is also possible.

Controllable I/O Points

Type of control unit	Number of I/O points when using control unit	Number of I/O points when using FPO expansion unit
FPG -C32T	32 points	Max. 128 points
FPG -C32T2	24 points	Max. 120 points
FPG -C24R2		

1.3.2 Restrictions on the Number of Units for Expansion (for FP Σ expansion unit)

Expansion unit 4

Expansion unit 3

Expansion unit 2

Expansion unit 1

Control unit

Max. possible expansion is with a total of four units.
Up to four dedicated FP Σ expansion units can be added at the left of the FP Σ.
The 64 points type expansion unit consist of 32 input points and 32 transistor output points.

Controllable I/O Points

Type of control unit	Number of I/O points when using control unit	Number of I/O points when using FP Σ expansion unit
FPG-C32T2	32 points	Max. 288 points
FPG-C24R2	24 points	Max. 280 points

The FP Σ expansion unit cannot be used for FPG-C32T.

Tip
If using FPO expansion units and FP Σ expansion units in combination, the number of input and output points can be expanded to a maximum of 384 points for the FPG-C32T2 and 376 points for the FPG-C24R 2.

1.4 Programming Tools

This section explains about the programming tools for FP Σ.

1.4.1 Tools Needed for Programming

(1) Programming tool software

The tool software can also be used with the FP series. The "FPWIN Pro Ver. 4" or "FPWIN GR Ver. 2" Windows software is used with the FPE.
The earlier FPWIN GR Ver. 1x, NPST-GR, and FP Programmer cannot be used.
(2) PC connection cable

This cable needed for connection between the FP Σ and the computer.

Figure 7: Programming tools

1.4.2 Software Environment and Suitable Cable

Standard ladder diagram tool software "FPWIN-GR Ver.2"

Type of software		OS (Operating system)	Hard disk capacity	Part No.	$\begin{aligned} & \hline \text { Product } \\ & \text { No. } \end{aligned}$
FPWIN-GR Ver. 2 English-language menu	English-language software	Windows 95/98/ Me/2000/NT (Ver. 4.0 or later)	30MB or more	FPWINGRF-EN2	AFPS10520
	Upgrade (to upgrade from Ver.1.1)			FPWINGRR-EN2	AFPS 10520R

Conforms to IEC61131-3 programming tool software "FPWIN-Pro Ver.4"

Type of software		OS (Operating system)	Hard disk capacity	Part No.	Product No.
FPWIN Pro Ver. 4 Full type (for all type FP series PLC)	Englishlanguage menu	Windows 95/98/ Me/2000/NT (Ver. 4.0 or later)	100MB or more	FPWINPROF-EN4	AFPS50540
FPWIN Pro Ver. 4 Small type (for FPO, FP Σ, FP1, and FP-M)	English language menu			FPWINPROS-EN4	AFPS51540

Type of computer and suitable cable

Type of computer	Cable	Cable specification
IBM PC/AT or its compatible machine	Part No.: AFC8503	D-Sub 9-pin female-Mini DIN 5-pin male
	Part No.: AFC8513	D-Sub 25-pin male-Mini DIN 5-pin male

Chapter 2

Specifications and Functions of Control Unit

2.1 Parts and Functions 2-3
2.2 Input and Output Specifications 2-7
2.3 Terminal Layout Diagram 2-12

2.1 Parts and Functions

This section explains about the parts and functions of FP Σ control unit.

2.1.1 Parts and Functions

For all type control unit

Figure 8: FP Σ Parts and Functions

(1) Status indicator LEDs

These LEDs display the current mode of operation or the occurrence of an error.

LED	LED and operation status
RUN (green)	Lights when in the RUN mode and indicates that the program is being executed.
	It flashes during forced input/output. (The RUN and PROG LEDs flash alternately.)
PROG. (green)	Lights when in the PROG. mode and indicates that operation has stopped.
	It flashes during forced input/output. (The RUN and PROG LEDs flash alternately.)
	Flashes when an error is detected during the self-diagnostic function.
	Lights if a hardware error occurs, or if operation slows because of the program, and the watchdog timer is activated.

(2) RUN/PROG. mode switch

This switch is used to change the operation mode of the PLC.

Switch position	Operation mode
RUN (upward)	This sets the RUN mode. The program is executed and operation begins.
PROG. (downward)	This sets the PROG. mode. The operation stops. In this mode, programming can be done using tools.

When performing remote switching from the programming tool, the position of the mode switch and the actual mode of operation may differ. Verify the mode with the status indicator LED. Otherwise, restart the FP Σ and change the mode of operation with the RUN/PROG. mode switch.

(3) Communication status LEDs

These display the communication status of the COM. 1 and COM. 2 ports.

LED			LED and communication status
COM. 1	S	Transmitted data monitor	Flashes while data is being transmitted
			Goes out when no data is being transmitted
	R	Received data monitor	Flashes while data is being received
			Goes out when no data is being received
COM. 2	S	Transmitted data monitor	Flashes while data is being transmitted
			Goes out when no data is being transmitted
	R	Received data monitor	Flashes while data is being received
			Goes out when no data is being received

(4) Tool port (RS232C)

This port is used to connect a programming tool.
(5) Input connector ($\mathbf{1 0}$ pins $\times \mathbf{2}$)
(6) Input indicator LEDs

(7) Output connector (10 pins $\times 2$)

(8) Output indicator LEDs
(9) Analog potentiometer (analog dial)

Turning this dial changes the values of special data registers DT90040 and DT90041 within the range of K 0 to K 1000 . It can be used for analog timers and other applications.

(10) Power supply connector (24 V DC)

Supply 24 V DC. It is connected using the power supply cable (AFP0581) that comes with the unit.

(11) Left-side connector for FP Σ expansion

This is used to connect dedicated FP Σ expansion units on the left side of the control unit with the internal circuits.
*The FPG-C32T2 and FPG-C24R2 control units are equipped with this connector, but the FPG-C32T is not.

(12) Unit No. (Station No.) setting switch

This unit No. (station No.) is specified when using the communication functions provided on the optional communication cassettes.

The unit No. (station No.) setting switch is located under the cover on the back of the unit. Specify the unit (station) number using the selector switch and the dial.

Figure 9: FP Σ Parts and Functions (Unit No. setting switch)

(13) Communication cassette (option)

This is the optional cassette type adapter used when communication is carried out. Any one of the following the cassette types may be installed.

- 1-channel RS232C type
- 2-channel RS232C type
- 1-channel RS485 type

(14) Expansion hook

This hook is used to secure expansion units. The hook is also used for installation on flat type mounting plate (AFP0804).

(15) Right-side connector for FP0 expansion

Connects an expansion unit to the internal circuit of the control unit.

(16) DIN rail attachment lever

The FPE unit enables attachment at a touch to a DIN rail. The lever is also used for installation on slim 30 type mounting plate (AFP 0811).

2.1.2 Tool Port Specification

A commercial mini-DIN 5-pin connector is used for the Tool port on the control unit.

Pin no.	Signal name	Abbreviation	Signal direction
$\mathbf{1}$	Signal Ground	SG	-
$\mathbf{2}$	Transmitted Data	SD	Unit \rightarrow External device
$\mathbf{3}$	Received Data	RD	Unit \leftarrow External device
$\mathbf{4}$	(Not used)	-	-
$\mathbf{5}$	+5 V	+5 V	Unit \rightarrow External device

Figure 10: FP P Parts and Functions (Tool port)
The following are the default settings set when the unit is shipped from the factory. The system registers should be used to change these.

- Baud rate

9600 bps

- Character bit

8 bit

- Parity check Odd parity
- Stop bit length . . 1 bit

2.1.3 Communication Cassette

The detachable communication cassette (optional) can be selected from among the three types shown below.

Type	Applicable communication function	Terminal layout diagram	
1-channel RS232C type	Computer link General-purpose serial communication		SD: Transmitted Data (Output) RD: Received Data (Input) RS: Request to Send (Output) CS: Clear to Send (Input) SG: Signal Ground
$\begin{aligned} & \text { 2-channel } \\ & \text { RS232C } \\ & \text { type } \end{aligned}$	Computer link General-purpose serial communication		S1: Transmitted Data (Output) (COM.1) R1: Received Data (Input) (COM.1) S2: Transmitted Data (Output) (COM.2) R2: Received Data (Input) (COM.2) SG: Signal Ground (COM.1 and 2)
1-channel RS485 type	Computer link General-purpose serial communication PLC link		

2.2 Input and Output Specifications

This section contains input and output specifications of FP Σ control unit.

2.2.1 Input Specifications

Input specifications (for all type)

Item		Description
Insulation method		Optical coupler
Rated input voltage		24 V DC
Operating voltage range		21.6 to 26.4 V DC
Rated input current		For X0, X1, X3, X4: approx. 8 mA For X2, X5 to X7: approx. 4.3 mA For X8 to XF: approx. 3.5 mA
Input points per common		For C32T, C32T2: 16 points/common For C24R 2: 8 points/common (Either the positive or negative of the input power supply can be connected to common terminal.)
Min. on voltage/Min. on current		For X0, X1, X3, X4: 19.2 V DC/6 mA For X2, X5 to XF: 19.2 V DC/3 mA
Max. off voltage/Max. off current		2.4 V DC/1.3 mA
Input impedance		$\begin{array}{ll}\text { For X0, X1, X3, X4: } 3 \mathrm{k} \Omega \\ \text { For X2, X5 to X7: } & 5.6 \mathrm{k} \Omega \\ \text { For X8 to XF: } & 6.8 \mathrm{k} \Omega\end{array}$
Response time	off \rightarrow on	```For input X0, X1, X3, X4: 1 ms or less: normal input 5 s or less: high-speed counter, pulse catch, interrupt input settings For input X2, X5 to X7: 1 ms or less: normal input 100 \mus or less: high-speed counter, pulse catch, interrupt input settings For input X8 to XF: 1 ms or less: normal input only```
	on \rightarrow off	Same as above
Operating mode indicator		LED display

Note

X0 through X7 are inputs for the high-speed counter and have a fast response time. If used as normal inputs, we recommend inserting a timer in the ladder program as chattering and noise may be interpreted as an input signal. Also, the above specifications apply when the rated input voltage is 24 VDC and the temperature is $25^{\circ} \mathrm{C} / 70^{\circ} \mathrm{F}$.

Limitations on number of simultaneous input on points

Keep the number of input points per common which are simultaneously on within the following range as determined by the temperature.
[C32T]

Ambient temperature (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$)
[C24R]

Figure 11: FPE Limitations on number of simultaneous input on points

Internal circuit diagram

[$\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 3, \mathrm{X} 4$]

Figure 12: FPE Internal circuit diagram (Input-1)
[X2, X5 to XF]

[^1]Figure 13: FPE Internal circuit diagram (Input-2)

2.2.2 Output Specifications

Transistor output specifications (for C32T and C32T2)

Item	Des cription
Insulation method	Optical coupler
Output type	Open collector (NPN)
Rated load voltage	5 to 24 V DC
Operating load voltage range	4.75 to 26.4 V DC
Max. load current	For Y0, Y 1, Y 3, Y4: 0.3 A For Y2, Y5 to YF: 0.1 A
Max. surge current	For Y0, Y1, Y3, Y4: 0.9 A For Y2, Y5 to YF: 0.5 A
Output points per common	16 points/common
Off state leakage current	100 uA or less
On state voltage drop	0.5 V or less
Response time	off \rightarrow on

Limitations on number of simultaneous output on points

Keep the number of output points per common which are simultaneously on within the following range as determined by the ambient temperature.

> [C32T]

Ambient temperature (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$)
Figure 14: FP Σ Limitations on number of simultaneous output on points

Internal circuit diagram

[$\mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 3, \mathrm{Y} 4$]

Figure 15: FPE Internal circuit diagram (output-1)
[Y2, Y 5 to YF]

Figure 16: FPE Internal circuit diagram (output-2)

Relay output specifications (for C24R2)

Item		Description
Output type		1a (1 Form A, Normally open)
Rated control capacity		2 A 250 V AC, 2 A 20 V DC (4.5 A per common or later)
Output points per common		8 points/common
Response time	off \rightarrow on	Approx. 10 ms
	on \rightarrow off	Approx. 8 ms
Mechanical lifetime		Min. 20,000,000 operations
Electrical lifetime		Min. 100,000 operations
Surge absorber		-
Operating mode indicator		LED display

Limitations on number of simultaneous output on points

Keep the number of output points which are simultaneously on within the following range as determined by the ambient temperature.

Internal circuit diagram

[C24R]

2.3 Terminal Layout Diagram

2.3.1 Control Unit (for C 32T and C 32T2)

Input

Note
The four COM terminals of input circuit are connected internally.

Output

Figure 17: FP Σ Terminal layout diagram (I/O connector)

Notes

- The two (+) terminals of output circuit are connected internally.
- The two (-) terminals of output circuit are connected internally.

2.3.2 Control Unit (for C24R2)

Input

\bigcirc		X8	\bigcirc
-8-	X1	X9	\bigcirc
\square	X2	XA	\bigcirc
\square	X3	XB	-
\square	X4	XC	-\%-
\square	X5	XD	\bigcirc
\%-	X6	XE	$\stackrel{\square}{0}$
\square	X7	XF	\square
\cdots	COM	COM	-

Note
The two COM terminals of input circuit are not connected internally.

Output

Chapter 3

Expansion

3.1 Type of Expansion Unit 3-3
3.2 Expansion Method of Units for FPO and FP 3-4
3.3 Expansion Method of FP Σ Expansion Unit 3-5
3.4 Specifications of FPE Expansion Unit 3-6

3.1 Type of Expansion Unit

Expansion I/O units, power supply units, and intelligent units from the earlier FP 0 series can be used with the FP , in addition to the dedicated expansion units designed expressly for the FP Σ.
Expansion units used for the earlier FP 0 series are connected on the right side of the control unit, just as they were with the FP0. Dedicated expansion units for the FPE are connected to the left side of the control unit.

Expansion on left side of control unit

Expansion possible up to 4 units

3.2 Expansion Method of Units for FPO and FPS

The previously available expansion I/O unit or intelligent unit for FPO is expanded by connecting to the right side of control unit.
Because unit expansion is done using the right-side connector for FPO expansion and expansion hook on the side of the unit, no expansion cable is needed.
(1) Peel the seal on the side of the unit so that the internal right-side connector for FPO expansion is exposed.

Figure 18: Expansion method procedure-1
(2) Raise the expansion hooks on the top and bottom sides of the unit with a screwdriver.

Figure 19: Expansion method procedure-2
(3) Align the pins and holes in the four corners of the control unit and expansion unit, and insert the pins into the holes so that there is no gap between the units.

Figure 20: Expansion method procedure-3
(4) Press down the expansion hooks raised in step 2 to secure the unit.

Figure 21: Expansion method procedure-4

3.3 Expansion Method of FPE Expansion Unit

The dedicated expansion unit for FP Σ is expanded by connecting to the left side of the control unit. Because unit expansion is done using the left-side connector for FP Σ expansion and expansion hook on the side of the unit, no expansion cable is needed.
(1) Remove the cover on the left side of the unit so that the internal left-side connector for FP Σ expansion is exposed.
(2) Raise the expansion hooks on the top and bottom sides of the unit with a screwdriver.

(3) Align the pins and holes in the four corners of the control unit and expansion unit, and insert the pins into the holes so that there is no gap between the units.

(4) Press down the expansion hooks raised in step 2 to secure the unit.

3.4 Specifications of FP Σ Expansion Unit

3.4.1 FP E Expansion I/O Unit

Parts and Functions

FPG-XY64D2T
(Input: 32 points / Transistor output: 32 points)

(1) LED display selection switch

S witches between the input (32 points) and output (32 points) of the LED display.
(2) Input connector (40 pins)
(3) Output connector (40 pins)
(4) Input and Output indicator LEDs
(5) FP Σ expansion connector

This expansion connector is used to connect the dedicated unit for FP Σ.

(6) Expansion hook

This hook is used to secure expansion unit. The hook is also used for installation on FPO mounting plate (flat type)(Part No.: AFP 0804).

(7) DIN rail attachment lever

The expansion unit enables attachment at a touch to a DIN rail. The lever is also used for installation on FP0 mounting plate (slim 30 type)(Part No.: AFP 0811).

Input specifications

Item	Description		
Insulation method	Optical coupler		
Rated input voltage	24 V DC		
Operating voltage range	21.6 to 26.4 V DC		
Rated input current	Approx. 3.5 mA		
Input points per common	32 points/common (Either the positive or negative of input power supply can be connected to common terminal.)		
Min. on voltage/Min. on current	$19.2 \mathrm{~V} \mathrm{DC/3} \mathrm{~mA}$		
Max. off voltage/Max. off current	$2.4 \mathrm{~V} \mathrm{DC} / 1.3 \mathrm{~mA}$		
Input impedance	Approx. $6.8 \mathrm{k} \Omega$		
Response time	off \rightarrow on		
	0.2 ms or less		
on \rightarrow off	0.3 ms or less		
Operating mode indicator			LED display

Transistor output specifications

Item		Description
Insulation method		Optical coupler
Output type		Open collector
Rated load voltage		5 to 24 V DC
Operating load voltage range		4.75 to 26.4 V DC
Max. load current		0.1 A
Max. surge current		0.5 A
Output points per common		32 points/common
Off state leakage current		$100 \mu \mathrm{~A}$ or less
On state voltage drop		0.5 V or less
Response time	off \rightarrow on	0.2 ms or less
	on \rightarrow off	0.5 ms or less
External power supply for driving internal circuit	Voltage	21.6 to 26.4 V DC
	Current	15 mA or less
Surge absorber		Zener diode
Operating mode indicator		LED display
Phase fault protection		Thermal protection

Limitations on number of simultaneous on points

Keep the number of points which are simultaneously on within the following range as determined by the ambient temperature.

Internal circuit diagram

[Output]

Terminal layout diagram

Note: The number in the connector are for the first expansion.

Chapter 4

I/O Allocation

4.1 I/O Allocation 4-3

4.1 I/O Allocation

This section explains about the I/O allocation of FP Σ.

Max. possible expansion is with a total of four units.

Max. possible expansion is with a total of three units.

Figure 22: FPEI/O allocation

4.1.1 I/O Number of FP Σ Control Unit

The I/O allocation of FP Σ control unit is fixed.

Type of control unit		I/O number
FPG-C32T	Input (16 points)	X 0 to XF
	Output (16 points)	Y 0 to YF
FPG-C24R2	Input (16 points)	$\mathrm{X0}$ to XF
	Output (8 points)	Y 0 to Y7

4.1.2 I/O Number of FP Σ Expansion Unit (for left side expansion)

I/O do not need to be set as I/O allocation is performed automatically when an expansion unit is added.

The I/O allocation of expansion unit is determined by the installation location.

Type of expansion unit		First expansion	Second expansion	Third expansion	Fourth expansion
XY64D2T	Input (32 points)	X 100 to X 11 F	X 180 to X 19 F	X 260 to X 27 F	X 340 to X 35 F
	Output (32 points)	Y 100 to Y 11 F	Y 180 to Y 19 F	Y 260 to Y 27 F	Y 340 to Y 35 F

Note
The FPI expansion unit nearest the control unit has the lowest I/O number, so that the unit closest to the control unit is the first unit, the one next to that the second, and so on. Consequently, the I/O numbers in the illustration below start with the lowest number at the right and proceed in sequential order.

4.1.3 I/O Number of FPO Expansion Unit (for right side expansion)

I/O do not need to be set as I/O allocation is performed automatically when an expansion unit is added. The I/O allocation of expansion unit is determined by the installation location.

Type of expansion unit		First expansion	Second expansion	Third expansion
E8X	Input (8 points)	X20 to X27	X40 to X47	X60 to X67
E8R	Input (4 points)	X20 to X23	X40 to X43	X60 to X63
	Output (4 points)	Y20 to Y23	Y40 to Y43	Y 60 to Y63
E8YR/E8YT/E8YP	Output (8 points)	Y20 to Y27	Y40 to Y47	Y60 to Y67
E16X	Input (16 points)	X20 to X2F	X40 to X4F	X60 to X6F
E16R/E16T/E16P	Input (8 points)	X20 to X27	X40 to X47	X60 to X67
	Output (8 points)	Y20 to Y27	Y40 to Y47	Y60 to Y67
E16YT/E16YP	Output (16 points)	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F
E32T/E32P	Input (16 points)	X20 to X2F	X40 to X4F	X60 to X6F
	Output (16 points)	Y20 to Y2F	Y 40 to Y 4F	Y60 to Y6F

4.1.4 $\quad \mathrm{I} / \mathrm{O}$ Number of FPO Analog I/O Unit (for right side expansion)

The I/O allocation of FPO analog I/O unit "FP0-A21" is determined by the installation location.

Unit		First expansion	Second expansion	Third expansion
Input	CH0 (16 points)	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	CH1 (16 points)	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
Output (16 points)		WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)

4.1.5 I/O Number of FPO A/D Conversion Unit (for right side expansion)

The I/O allocation of FPO A/D conversion unit "FPO-A80" is determined by the installation location.
The data for the various channels is converted and loaded with a user program that includes a switching flag to convert the data.

Unit		First expansion	Second expansion	Third expansion
Input	CH0 (16 points)	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	CH2 (16 points)			
	CH4 (16 points)			
	CH6 (16 points)			
	CH1 (16 points)	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	CH3 (16 points)			
	CH5 (16 points)			
	CH7 (16 points)			

4.1.6 I/O Number of FPO I/O Link Unit (for right side expansion)

The I/O allocation of FPO I/O link unit "FPO-IOL" is determined by the installation location.

Unit	First expansion	Second expansion	Third expansion
Input (32 points)	X 20 to X 3 F	X 40 to X 5 F	X 60 to $\mathrm{X7F}$
Output (32 points)	Y 20 to Y 3 F	Y 40 to Y 5 F	Y 60 to Y 7 F

Tip

I/O number of FP Σ and FPO

Specifying X and Y numbers

On the FP Σ and the FP0, the same numbers are used for input and output. Example: The same number "X20 and Y20" can be used for input and output

Expression of numbers for input/output relays
Since input relay " X " and output relay " Y " are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

Decimal
1, 2, 3
Hexadecimal
1, 2, 3 9, A, B ... F

Chapter 5

Installation and Wiring

5.1 Installation 5-3
5.2 Wiring of P ower Supply 5-9
5.3 Wiring of Input and Output 5-12
5.4 Wiring of MIL Connector Type 5-17
5.5 Wiring of Terminal Block Type 5-20
5.6 Safety Measures 5-22
5.7 Backup Battery 5-24

5.1 Installation

This section explains installation environment and installation method of FP Σ.

5.1.1 Installation Environment and Space

Avoid installing the unit in the following locations:

- Ambient temperatures outside the range of $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}$
- Ambient humidity outside the range of 30% to 85% RH
- Sudden temperature changes causing condensation
- Inflammable or corrosive gases
- Excessive airborne dust, metal particles or salts
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda
- Excessive vibration or shock
- Direct sunlight
- Water or oil in any form including spray or mist

Measures regarding noise:

- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges
- If noise occurs in the power supply line even after the above countermeasures are taken, it is recommended to supply power through an insulation transformer, noise filter, or like.

Measures regarding heat discharge

Always install the unit orientated with the tool port facing outward on the bottom in order to prevent the generation of heat.

Figure 23: FP Σ Installation-heat discharge

Do not install the FP Σ control unit as shown below.

Figure 24: FP Σ Installation direction
Do not install the unit above devices which generate heat such as heaters, transformers or large scale resistors.

Installation space

Leave at least $50 \mathrm{~mm} / 1.97 \mathrm{in}$. of space between the wiring ducts of the unit and other devices to allow heat radiation and unit replacement.

Figure 25: FP Σ Installation space-1
Maintain a minimum of $100 \mathrm{~mm} / 3.937$ in. between devices to avoid adverse affects from noise and heat when installing a device or panel door to the front of the PLC unit.

Figure 26: FPE Installation space-2
Keep the first $100 \mathrm{~mm} / 3.937 \mathrm{in}$. from the front surface of the control unit open in order to allow room for programming tool connections and wiring.

5.1.2 Installation and Removal

Attachment to DIN rail and removal from DIN rail

The FP Σ unit enables simple attachment to DIN rails.

Procedure of installation method

(1) Fit the upper hook of the unit onto the DIN rail.
(2) Without moving the upper hook, press on the lower hook to fit the unit into position.

Figure 27: Installation method

Procedure of removal method

(1) Insert a slotted screwdriver into the DIN rail attachment lever.
(2) Pull the attachment lever downwards.
(3) Lift up the unit and remove it from the rail.

Figure 28: Removal method

Installation using the optional mounting plate

When using the slim 30 type mounting plate (AFP0811)

Use M4 size pan-head screws for attachment of the slim 30 type mounting plate to mounting panel and install according to the dimensions shown below.

Figure 29: FPE Installation-optional slim 30 type mounting plate
The rest of the procedure is the same as that for attaching the unit to the DIN rails.

Figure 30: FP Σ Installation using slim 30 type mounting plate
When using an expansion unit, tighten the screws after joining all of the slim 30 type mounting plate to be connected. Tighten the screws at each of the four corners.

Example: Two expansion units

Figure 31: FP Σ Installation using two expansion units

When using the flat type mounting plate (AFP0804)

Use M4 size pan-head screws for attachment of the flat type mounting plate and install according to the dimensions shown below.

Figure 32: FP $\operatorname{Installation-optional~flat~type~mounting~plate~}$
Raise the expansion hooks on the top and bottom of the unit.
Align the expansion hooks with the mounting plate and press the hooks on the top and bottom.

Figure 33: FP Σ Installation using flat type mounting plate
An unit with an attached flat type mounting plate can also be installed sideways on a DIN rail.

Figure 34: FPE Installation on DIN rail using flat type mounting plate

5.2 Wiring of Power Supply

This section explains power supply wiring of FP Σ.

5.2.1 Wiring of Power Supply

Use the power supply cable provided as an accessory to supply power to the unit.

Figure 35: FP Σ Wiring of power supply
Power supply wiring for the unit
Use the power supply cable (Part No.: AFP0581) that comes with the unit to connect the power supply.
$\begin{array}{ll}\text {-Brown: } & 24 \mathrm{~V} \text { DC } \\ \text {-Blue: } & 0 \mathrm{~V} \\ \text {-Green: } & \text { Function earth }\end{array}$

Power supply wire

To minimize adverse effects from noise, twist the brown and blue wires of the power supply cable.

Power supply type

To protect the system against erroneous voltage from the power supply line, use an insulated power supply with an internal protective circuit.
The regulator on the unit is a non-insulated type.
If using a power supply device without an internal protective circuit, always make sure power is supplied to the unit through a protective element such as a fuse.

Power supply voltage

Rated voltage	24 V DC
Operating voltage range	21.6 to 26.4 V DC

Wiring system

Isolate the wiring systems to the control unit, input/output devices, and mechanical power apparatus.

Circuit breaker

Figure 36: FP Σ Power supply wiring system

Measures regarding power supply sequence (start up sequence)

The power supply sequence should be set up so that power to the control unit is turned off before the input/output power supplies.
If the input/output power supplies are turned off before the power to the control unit, the control unit will detect the input fluctuations and may begin an unscheduled operation.
Be sure to supply power to a control unit and an expansion unit from the same power supply, and turn the power on and off simultaneously for both.

5.2.2 Grounding

Under normal conditions, the inherent noise resistance is sufficient. However, in situations of excess noise, ground the instrument to increase noise suppression.
For grounding purposes, use wiring with a minimum of $\mathbf{2} \mathbf{~ m m}^{\mathbf{2}}$. The grounding connection should have a resistance of less than 100Ω.
The point of grounding should be as close to the PLC unit as possible. The ground wire should be as short as possible.
If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.

CORRECT

INCORRECT

Figure 37: FP Σ Grounding

Note

Depending on the surroundings in which the equipment is used, grounding may cause problems.
Example:
Since the power supply line of the FPI power supply connector is connected to the function earth through a varistor, if there is an irregular potential between the power supply line and earth, the varistor may be shorted.

Figure 38: Power supply line of FP Σ and FP0 expansion unit

5.3 Wiring of Input and Output

This section explains input wiring and output wiring of FP Σ.

5.3.1 Input Wiring

Connection of photoelectric sensor and proximity sensor

Relay output type

Figure 39: FP R Relay output type sensor

NPN open collector output type

Figure 40: FPE NPN open collector output type sensor

Voltage output (Universal output) type

Figure 41: FP Σ Voltage output (universal output) type sensor

Two-wire output type

Figure 42: FPE Two-wire output type sensor

Precaution when using LED-equipped lead switch

When a LED is connected in series to an input contact such as LED-equipped lead switch, make sure that the on voltage applied to the PLC input terminal is greater than 19.2 V DC. In particular, take care when connecting a number of s witches in series.

Figure 43: FP \sum Precaution when using LED-equipped lead switch

Precaution when using two - wire type sensor

If the input of PLC does not turn off because of leakage current from the two-wire type sensor "photoelectric sensor or proximity sensor", the use of a bleeder resistor is recommended, as shown below.

Two-wire type sensor

FP :

Figure 44: FP Σ Precaution when using two - wire type sensor
The off voltage of the input is 2.4 V , therefore, select the value of bleeder resistor " R " so that the voltage between the COM terminal and the input terminal will be less than 2.4 V .
The input impedance is $5.6 \mathrm{k} \Omega$. (I: Sensor's leakage current (mA))
The resistance R of the bleeder resistor is: $R \leqq \frac{13.44}{5.6 \times I-2.4}(\mathrm{k} \Omega)$
The formula is based on an input impedance of $5.6 \mathrm{k} \Omega$. The input impedance varies depending on the input terminal number.

The wattage W of the resistor is:

$$
W=\frac{(\text { Power supply voltage })^{2}}{R}
$$

In the actual selection, use a value that is 3 to 5 times the value of W.

Precaution when using LED-equipped limit switch

If the input of PLC does not turn off because of the leakage current from the LEDequipped limit switch, the use of a bleeder resistor is recommended, as shown below.

Power supply for input
r : Internal resistor of limit switch $(k \Omega)$
Figure 45: FP Σ Precaution when using LED-equipped limit switch
The off voltage of input is 2.4 V , therefore when the power supply voltage is 24 V , select the bleeder resistor " R " so that
the current will be greater than $I=\frac{24-2.4}{r}$
The resistance R of the bleeder resistor is: $\mathrm{R} \leqq \frac{13.44}{5.6 \times \mathrm{I}-2.4}(\mathrm{k} \Omega)$
The wattage W of the resistor is: $W=\frac{(\text { Power supply voltage })^{2}}{R}$
In the actual selection, use a value that is 3 to 5 times the value of W.

5.3.2 Output Wiring

Protective circuit for inductive loads

With an inductive load, a protective circuit should be installed in parallel with the load. When switching DC inductive loads with relay output type, be sure to connect a diode across the ends of the load.
When using an AC inductive load

Example of surge absorber: R: $50 \Omega, \mathrm{C}: 0.47 \mu \mathrm{~F}$

When using a DC inductive load

Diode:
Reverse voltage $\left(V_{\mathrm{R}}\right)$: 3 times the load voltage
Average rectified forward current $\left(I_{0}\right)$: Load current or more

Precautions when using capacitive loads

When connecting loads with large in-rush currents, to minimize their effect, connect a protection circuit as shown below.

Figure 46: FP Σ Precautions when using capacitive loads

About the short-circuit protective circuit

To prevent the output circuit from being damaged by a short-circuit or other electrical problems on the output side, a transistor with short-circuit protection is provided.

5.3.3 Precautions Regarding Input and Output Wirings

Be sure to select the thickness (dia.) of the input and output wires while taking into consideration the required current capacity.

Arrange the wiring so that the input and output wiring are separated, and these wirings are separated from the power wiring, as much as possible. Do not route them through the same duct or wrap them up together.
Separate the input/output wires from the power and high voltage wires by at least $100 \mathrm{~mm} / 3.937 \mathrm{in}$.

5.4 Wiring of MIL Connector Type

Supplied connector and Suitable wires

The connector "housings, semi-cover and welders" listed below come supplied with the FP Σ control unit. Use the suitable wires given below. Also, use the required pressure connection tools for connecting the wires.

Figure 47: FP Σ Supplied MIL connector

Supplied connector (AFP0807)

Type and Product No.	
Housing	10 - pin type only
Semi-cover	AXW61001
Welder (contact)	AXW7221

Suitable wires

Size	Conductor cross -sectional area	Insulation thickness
AWG \#22	$0.3 \mathrm{~mm}^{2}$	dia. 1.5 to dia. 1.1
AWG \#24	$0.2 \mathrm{~mm}^{2}$	

Pressure connection tool

Product No.	AXY52000

Figure 48: FP Σ Pressure connection tool

Procedure of assembly (Wiring method)

The wire end can be directly crimped without removing the wire's insulation, saving labor.
(1) Bend the welder (contact) back from the carrier, and set it in the pressure connection tool.

Figure 49: FP Σ MIL connector assembly procedure-1
(2) Insert the wire without removing its insulation until it stops, and lightly grip the tool.

Figure 50: FP Σ MIL connector assembly procedure-2
(3) After press-fitting the wire, insert it into the housing.

Figure 51: FP Σ MIL connector assembly procedure-3
(4) When all wires has been inserted, fit the semi-cover into place.

Figure 52: FP Σ MIL connector assembly procedure-4

If there is a wiring mistake or the cable is incorrectly pressure-connected, the contact puller pin provided with the fitting can be used to remove the contact.

Press the housing against the pressure connection tool so that the contact puller pin comes in contact with this section.

Figure 53: FP Σ MIL connector-rewiring

Tip

If using a MIL connector for flat cables, specify the product no. AXM110915.

5.5 Wiring of Terminal Block Type

A screw-down connection type for terminal block is used. The suitable wires are given below.

Terminal block socket

Item	Description
Number of pin	9 pins
Manufacturer	Phoenix Contact Co.
Model	MC1,5/9-ST-3,5
Product number	1840434

Suitable wires

Size	Nominal cross-sectional area
AWG \#22	$0.3 \mathrm{~mm}^{2}$
AWG \#24 to $\mathbf{1 6}$	0.2 to $1.25 \mathrm{~mm}^{2}$

Pole terminal with a compatible insulation sleeve

If a pole terminal is being used, the following models are marketed by Phoenix Contact Co.

Manufacturer	Cross-sectional area $\left(\mathbf{m m}^{2}\right)$	Size	Part No.
Phoenix Contact Co.	0.25	AWG \#24	Al $0,25-6$ YE
	0.50	AWG \#20	Al $0,5-6$ WH
	0.75	AWG \#18	Al $0,75-6 \mathrm{GY}$
	1.00	AWG \#18	Al $1-6$ RD
	0.5×2	AWG \#20 (for 2 pcs.)	Al - TWIN $2 \times 0.5-8$ WH

Pressure welding tool for pole terminals

Manufacturer	Phoenix Contact Co.
Part No.	CRIMPFOX UD6
Product number	1204436

When tightening the terminals of the terminal block, use a screwdriver (P hoenix C ontact Co., Product No. 1205037) with a blade size of 0.4×2.5. The tightening torque should be 0.22 to $0.25 \mathrm{~N} \cdot \mathrm{~m}(2.3$ to $2.5 \mathrm{kgf} \cdot \mathrm{cm}$) or less.

Wiring method
Procedure:

1. Remove a portion of the wire's insulation.

2. Insert the wire into the terminal block until it contacts the back of the block socket, and then tighten the screw clockwise to fix the wire in place.

- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the terminal block socket construction, if the wire closes upon counter-clockwise rotation, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

5.6 Safety Measures

This section explains the safety measures, momentary power failures and protection of power supply and output.

5.6.1 Safety Measures

Precautions regarding system design

In certain applications, malfunction may occur for the following reasons:

- Power on timing differences between the PLC system and input/output or mechanical power apparatus
- Responce time lag when a momentary power drop occurs
- Abnormality in the PLC unit, external power supply, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequates safety measures listed in the following:

Interlock circuit

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit externally.

Emergency stop circuit

Add an emergency stop circuit externally to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

Start up sequence

The PLC should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended:

- Turn on the PLC with the mode selector set to the PROG. mode, and then switch to the RUN mode.
- Program the PLC so as to disregard the inputs and outputs until the outside devices are energized

Note

When stopping the operation of the PLC also, have the input/output devices turned off after the PLC has stopped operating.

Grounding

When installing the PLC next to devices that generate high voltages from switching, such as inverters, do not ground them together. Use an exclusive ground for each device.

5.6.2 Momentary Power Failures

Operation of momentary power failures

If the duration of the power failure is less than 4 ms , the FP Σ continues to operate. If the power is off for 4 ms or longer, operation changes depending on the combination of units, the power supply voltage, and other factors. (In some cases, operation may be the same as that for a power supply reset.)

5.6.3 Protection of Power Supply and Output Sections

Power supply

An insulated power supply with an internal protective circuit should be used. The power supply for the control unit operation is a non-insulated circuit, so if an incorrect voltage is directly applied, the internal circuit may be damaged or destroyed. If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.

Protection of output

If current exceeding the rated control capacity is being supplied in the form of a motor lock current or a coil shorting in an electromagnetic device, a protective element such as a fuse should be attached externally.

5.7 B ackup Battery

This section explains installation, lifetime of backup battery and battery alarm error function setting.

5.7.1 Installation of Backup Battery

Installing a backup battery in the FP Σ makes it possible to access clock/calendar functions for use, in addition to backing up data registers and other data.
(1) Using a screwdriver or similar tool, open the battery cover.

Figure 54: FP Backup battery installation procedure-1
(2) Connect the connector, and place the battery so that the battery terminal fits between the two tabs.

Figure 55: FP Σ Backup battery installation procedure-2
(3) Insert the battery cover from above.

Figure 56: FP Σ Backup battery installation procedure-3

5.7.2 System Register Setting

Setting the battery error alarm

In the system register default settings, "No. 4 Alarm Battery Error" is set to "Off". W hen using the battery, set system register No. 4 of the control unit so that the battery error alarm is turned on.

Setting procedure using FPWIN GR

1. Select "PLC Configuration" on the "Option" menu, and click on "Action on Error" tab.
2. Turn on "No. 4 Alarm B attery Error" check box.

PLC Configuration setting dialog box

Figure 57: FPWIN GR - PLC Configuration setting dialog box

Specifying the hold area

In order to use backup functions such as data registers, settings must be entered for system registers Nos. 6 to 12.
For hold area setting using FPWIN GR, select "PLC Configuration" on the "Option" menu, and click on "Hold/Non-hold 1" and "Hold/Non-hold 2".

5.7.3 Lifetime of Backup Battery

The life of the backup battery will eventually expire and therefore it is important to replace it with a new battery periodically. Refer to the table below for a guide as to when to replace the battery.

Item	Description
Battery lifetime	220 days or more (typical lifetime in actual use: approx. 840 days at $25^{\circ} \mathrm{C} / 70^{\circ} \mathrm{F}$) (Suggested replacement interval: 1 year) (Value when no power at all is supplied)

Maintenance battery

Name	Part No.
Battery for FP Σ	AFPG804

Notes

- If system register "No. 4 Alarm Battery Error" is set to "ON", special internal relays $\mathbf{R 9 0 0 5}$ and $\mathbf{R 9 0 0 6}$ will go on if the battery voltage drops, and the ERROR/ALARM LED will flash. The battery remains effective for about a week after the alarm is issued, but in some cases the problem is not detected immediately. The battery should be replaced as soon as possible, without turning off the power supply.
- When replacing the battery, connect the new battery within 20 seconds of removing the old one.

Chapter 6

High-speed Counter and Pulse Output Functions

6.1 Overview of Each Functions 6-3
6.2 Function Specifications and Restricted Items 6-5
6.3 High-speed Counter Function 6-10
6.4 Pulse Output Function 6-20
6.5 PWM Output Function 6-56

6.1 Overview of Each Functions

This section explains about the functions that use built-in high-speed counter of FP Σ.

6.1.1 Three Functions that Use Built-in High-speed Counter

Functions that use built-in high-speed counter

There are three functions available when using the high-speed counter built into the FPE.

High-speed counter function

Figure 58: FP Σ High-speed counter function

Pulse output function

Figure 59: FP Σ Pulse output function

PWM output function

When you increase the pulse width...

Heating decreases.
Figure 60: FP Σ PWM output function

6.1.2 Performance of Built-in High-speed Counter

Number of channel

There are four channels for the built-in high-speed counter.
The channel number allocated for the high-speed counter will change depending on the function being used.

Counting range

K-2,147,483,648 to K2,147,483,647 (Coded 32-bit binary)

The built-in high-speed counter is a ring counter. Consequently, if the counted value exceeds the maximum value, it returns to the minimum value. Similarly, if the counted value drops below the minimum value, it goes back to the maximum value and continues counting from there.

Figure 61: Counting range of high-speed counter

Note

When the linear interpolation instruction F175 or the circular interpolation instruction F176 is used, the value for the target value or the amount of travel should be set so that it is within the range indicated below.
$-8,388,608$ to $+8,388,607$ (24-bit binary, with sign) The F175 and F176 instructions can be used only with the C32T2 control unit.

6.2 Function Specifications and Restricted Items

This section contains specifications and restriction of functions.

6.2.1 Table of Specifications

High-speed counter function specifications

Input/output contact number being used			Built-in highspeed counter channel no.	Memory area being used			Performance specifications		Related instructions
On/off output	Count input mode	Input contact number (value in pa-renthesis is reset input) *Note 1		Control flag	Elapsed value area	Target value area	Minimum input pulse width *Note 2	Maximum counting speed	
SpecifythedesiredoutputfromY0 to Y7usinginstruc-tion	Addition input, Subtraction input	$\begin{aligned} & \hline \text { X0 } \\ & \text { (X2) } \end{aligned}$	CHO	R903A	$\begin{array}{\|l\|} \hline \text { DT90044 } \\ \text { to } \\ \text { DT90045 } \end{array}$	$\begin{array}{\|l\|} \hline \text { DT90046 } \\ \text { to } \\ \text { DT90047 } \end{array}$	$10 \mu \mathrm{~S}$	$\begin{aligned} & \hline \cdot \text { Using } \\ & \text { one channel: } \\ & \text { Max. } 50 \mathrm{kHz} \\ & (\times 1-\text { channel) } \\ & \cdot \text { Using } \\ & \text { two channels: } \\ & \text { Max. } 30 \mathrm{kHz} \\ & \text { (} \times 2-\text { channel) } \\ & \cdot \text { Using } \\ & \text { three channels: } \\ & \text { Max. } 20 \mathrm{kHz} \\ & \text { (} \times 3-\text { channel) } \\ & \cdot \text { Using } \\ & \text { four channels: } \\ & \text { Max. 20 kHz } \\ & \text { (} \times 4-\text { channel) } \end{aligned}$	$\begin{aligned} & \text { F0 (MV), } \\ & \text { F1 } \\ & \text { (DMV), } \\ & \text { F166 } \\ & \text { (HC1S), } \\ & \text { F167 } \\ & \text { (HC1R) } \end{aligned}$
		$\begin{aligned} & \hline X 1 \\ & \text { (X2) } \end{aligned}$	CH1	R903B	$\begin{array}{\|l} \hline \text { DT90048 } \\ \text { to } \\ \text { DT90049 } \end{array}$	$\begin{array}{\|l\|} \hline \text { DT90050 } \\ \text { to } \\ \text { DT90051 } \end{array}$			
		$\begin{aligned} & \hline X 3 \\ & \text { (X5) } \end{aligned}$	CH 2	R 903C	$\begin{array}{\|l\|} \hline \text { DT90200 } \\ \text { to } \\ \text { DT90201 } \end{array}$	$\begin{array}{\|l} \hline \text { DT90202 } \\ \text { to } \\ \text { DT90203 } \end{array}$			
		$\begin{aligned} & \hline \mathrm{X4} \\ & \text { (X5) } \end{aligned}$	CH3	R903D	$\begin{array}{\|l\|} \hline \text { DT90204 } \\ \text { to } \\ \text { DT90205 } \end{array}$	$\begin{aligned} & \text { DT90206 } \\ & \text { to } \\ & \text { DT90207 } \end{aligned}$			
Specify the desired output from Y0 to Y7 using instruction	2-phase input, One input, Direction distinction	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \\ & \text { (X2) } \end{aligned}$	CHO	R903A	$\begin{array}{\|l} \hline \text { DT90044 } \\ \text { to } \\ \text { DT90045 } \end{array}$	$\begin{array}{\|l} \hline \text { DT90046 } \\ \text { to } \\ \text { DT90047 } \end{array}$	$25 \mu \mathrm{~s}$	Using one channel: Max. 20 kHz ($\times 1$-channel) Using two channels: Max. 15 kHz ($\times 2$-channel)	
		$\begin{aligned} & \hline \text { X3 } \\ & \text { X4 } \\ & \text { (X5) } \end{aligned}$	CH2	R 903C	$\begin{array}{\|l\|} \hline \text { DT90200 } \\ \text { to } \\ \text { DT90201 } \end{array}$	$\begin{aligned} & \text { DT90202 } \\ & \text { to } \\ & \text { DT90203 } \end{aligned}$			

Notes

1) Reset input X 2 can be set to either CH 0 or CH 1 . Reset input X 5 can be set to either CH 2 or CH 3 .
2) For information on min. input pulse width, see page 6-12.

Pulse output function specifications

Built-in high speed counter channel no.	Input/output contact number being used					Memory area being used			Maximum output frequency	Related instructions
	CW or Pulse output	CCW or sign output	Deviation counter clear output	Home input	Near home input	Control flag	Elapsed value area	Target value area		
CHO	YO	Y1	Y2	X2	$\begin{array}{\|l\|} \hline \text { DT90052 } \\ \text { <bit4> } \end{array}$	R 903A	DT90044 to DT90045	$\begin{aligned} & \text { DT90046 } \\ & \text { to } \\ & \text { DT90047 } \end{aligned}$	Using one channel: Max. 100 kHz ($\times 1$-channel) \cdot Using two channels: Max. 60 kHz	$\begin{aligned} & \hline \text { F0 (MV), } \\ & \text { F1 } \\ & \text { (DMV), } \\ & \text { F171 } \\ & \text { (SPDH), } \\ & \text { F172 } \\ & \text { (PLSH) } \end{aligned}$
CH2	Y 3	Y4	Y 5	X5	$\begin{array}{\|l\|} \hline \text { DT90052 } \\ \text { <bit4> } \end{array}$	R903C	$\begin{aligned} & \hline \text { DT90200 } \\ & \text { to } \\ & \text { DT90201 } \end{aligned}$	$\begin{aligned} & \text { DT90202 } \\ & \text { to } \\ & \text { DT90203 } \end{aligned}$	($\times 2$-channel) Using linear interpolation: Max. 100 kHz Using circular interpolation: Max. 20 kHz	F174 (SPOH) F175 (SPSH) F176 (SPCH)

Note

The linear and circular interpolation control functions can be used with the C32T2 control unit only.

PWM output function specifications

Built-in high-speed counter channel no.	Output contact number being used	Memory area being used	Output frequency (duty)	Related instructions
		Control flag		
CH0	Y0	R903A	• When the resolution is 1000, 1.5 Hz to 12.5 kHz (0.0 to $99.9 \%)$ When the resolution is 100, 15.6 kHz to 41.7 kHz $(0$ to $99 \%)$	F0 (MV), F1 (DMV), F173 (PWMH)
CH2	Y3	R903C		

6.2.2 Function being Used and Restrictions

Channel

The same channel cannot be used by more than one function.

Function being used	Channel	High -speed counter function (Addition input and Subtraction input)				High - speed counter function (Two -phase input, One input, and Direction distinction)	
		CHO	CH1	CH2	CH3	CHO	CH2
Pulse output function	CHO	N/A	A	A	A	N/A	A
	CH 2	A	A	N/A	A	A	N/A

Restrictions on I/O allocations

The inputs and outputs allocated to the various functions listed in the table in the previous section "6.2.1" cannot be allocated to more than one function.
Except for the examples noted below, inputs and outputs that have been allocated to the various functions cannot be allocated as normal inputs and outputs.
Cases in which inputs and outputs can be used as exceptions

15 Example 1:

If no reset input is used in the high-speed counter function, X2 and X5 are allocated as normal inputs.

Example 2:

If no output is used to clear the differential counter in the pulse output function, Y2 and Y5 are allocated as normal outputs.

Restrictions on the execution of related instructions (F166 to F176)

When any of the instructions related to the high-speed counter "F166 to F176" are executed, the control flag (special internal relay: R 903A to R 903D) corresponding to the used channel turns on.

Please be aware that the control flag is in progress may change while a scan is being carried out. To prevent this, an internal relay should be substituted at the beginning of the program.
When the flag for a channel turns on, another instruction cannot be executed using that same channel.

Restrictions for maximum counting speed and pulse output frequency
The counting speed when using the high-speed counter function will differ depending on the counting mode as shown in the table on page 6-5.

Example 1 :

While in the decremental input mode and using the two channels CH0 and CH1, CHO and CH1 can be used up to 30 kHz .

Example 2:

While in the two-phase input mode and using the two channels CHO and CH2, CHO and CH2 can be used up to 15 kHz .

The maximum output frequency when using the pulse output function will differ depending on the number of channel being used as shown in the table on page 6-6.
E Example 1 :
When using only one channel, CH 0 , up to 100 kHz can be used.
Example 2:
When using two channels, CHO and CH 2 , up to $\mathbf{6 0} \mathbf{~ k H z}$ may be used for each channel.

Example 3:
When linear interpolation control is being carried out on CHO and CH2, a composite speed of up to 100 kHz may be used for the pulse output function. When circular interpolation control is being carried out, the maximum composite speed that may be used is 20 kHz.
If using both the pulse output function and the high-speed counter function, the following combinations result.
$\stackrel{y}{s}$
Example 1:
When using one pulse output channel with a maximum output of 60 kHz , the maximum counting speed of the high-speed counter is 20 kHz in the single-phase and three channels mode.
Example 2:
When using one pulse output channel with a maximum output of 60 kHz , the maximum counting speed of the high-speed counter is 15 kHz in the two - phase and one channel mode.

Note
The linear and circular interpolation control functions can be used with the C32T2 control unit only.

6.2.3 Booting Time

The booting time is the time from when the instruction is executed, to the time that the pulse is actually output.

Type of instruction	B ooting time
Pulse output instruction F171 (SPDH) trapezoidal control/home return	If CW/CCW is set $:$ approx.200 $\mu \mathrm{s}$ (with 30 steps setting) : approx.400us (with 60 steps setting) If Pulse/Sign is set approx. $500 \mu \mathrm{~s}$ (with 30 steps setting) (*) : approx. 700 s (with 60 steps setting) (*)
Pulse output instruction F172 (PLSH) JOG operation	If CW/CCW is set: approx. $20 \mu \mathrm{~s}$ If Pu use/Sign is set: approx. $320 \mu \mathrm{~s}$ (*)
Pulse output instruction F174 (SPOH) Data table control	If CW/CCW is set: approx. $30 \mu \mathrm{~s}$ If Pu use/Sign is set: approx. $330 \mu \mathrm{~s}$ (*)
PWM output instruction F173 (PWMH)	Approx. $30 \mu \mathrm{~s}$

(*) If Pulse/Sign is set, a waiting time (approx. 300 us) is included from the time that the Sign output goes on until the pulse output instruction can be executed.

6.3 High-speed Counter Function

This section explains about the high-speed counter function of FP Σ.

6.3.1 Overview of High-speed Counter Function

High -speed counter function

The high-speed counter function counts the input signals, and when the count reaches the target value, turns on and off the desired output.

To turn on an output when the target value is matched, use the target value match on instruction F166 (HC 1S). To turn off an output, use the target value match off instruction F 167 (HC 1R).
Preset the output to be turned on and off with the SET/RET instruction.

Setting the system register

In order to use the high-speed counter function, it is necessary to set system register Nos. 400 and 401.

6.3.2 Types of Input Modes

Addition input mode

Figure 62: FP Σ High-speed counter function - addition input mode

Subtraction input mode

Count n $\mathrm{n}-1$ $\mathrm{n}-2$ $\mathrm{n}-3$ $\mathrm{n}-4$ \cdots \cdots 3 2 1 0

Figure 63: FPE High-speed counter function - subtraction input mode

Two - phase input mode (Phase difference input mode)

Figure 64: FP Σ High-speed counter function - two - phase input mode

One input mode (Addition and subtraction input mode)

Figure 65: FP Σ High-speed counter function - One input mode

Direction distinction mode

Figure 66: FP Σ High-speed counter function - direction distinction mode

6.3.3 Min. Input Pulse Width

The minimum input pulse width indicated below is necessary for the period

 T (1/frequency).
Single phase

Two-phase

Figure 68: FP Σ High-speed counter function - min. input pulse width (two-phase)

6.3.4 I/O Allocation

The inputting and outputting, as shown in the table on page 6-5, will differ depending on the channel number being used.
The output turned on and off can be specified from $Y 0$ to $Y 7$ as desired with instructions F 166 (HC 1S) and F 167 (HC1R).
When using CHO with incremental input and reset input

* The output turned on and off when the target values match can be specified from Yo to Y 7 as desired.
Figure 69: FP Σ High-speed counter function - I/O allocation-1
When using CHO with two-phase input and reset input

* The output turned on and off when the target values match can be specified from Y 0 to Y 7 as desired.
Figure 70: FPE High-speed counter function - I/O allocation-2

6.3.5 Instructions Used with High-speed Counter Function

High-speed counter control instruction (F0)

This instruction is used for counter operations such as software reset and count disable. Specify this instruction together with the special data register DT90052.
Once this instruction is executed, the settings will remain until this instruction is executed again.

Operations that can be performed with this instruction

- Counter software reset
- Counting operation enable/disable
- Hardware reset enable/disable
- Clear controls from high-speed counter instructions F166 to F176
- Clear target value match interrupt

Example:
Performing a software reset

Figure 71: FPE Program of high-speed counter control instruction "F0"
In the above program, the reset is performed in step (1) and 0 is entered just after that in step (2). The count is now ready for operation. If it is only reset, counting will not be performed.

Elapsed value change and read instruction (F1)

This instruction changes or reads the elapsed value of the high-speed counter.
Specify this instruction together with the special data register DT90044.
The elapsed value is stored as 32 -bit data in the combined area of special data registers DT90044 and DT90045.
Use this F1 (DMV) instruction to set the elapsed value.

Example 1:

Changing the elapsed value.

Figure 72: FPE Program (1) of elapsed value change and read instruction "F 1"

Example 2:

Reading the elapsed value

(D7)_[F1 DMV, DT90044, DT100] \quad| Read the elapsed value of the |
| :--- |
| high-speed counter and co- |
| pies it to DT100 and DT101 |

Figure 73: FP Σ Program (2) of elapsed value change and read instruction "F 1"

Tip

The area DT90052 for writing channels and control codes is allocated as shown below.
Control codes written with an $\mathbf{F O}(\mathbf{M V})$ instruction are stored by channel in special data registers DT90190 to DT90193.

High -speed counter control flag area of FP Σ

Target value match on instruction (F166)

Example 1:

$\left.\left\lvert\, \begin{array}{l}\text { XA } \\ -1 H(D F\end{array}\right.\right)[$ F166 HC1S, K0, K10000, Y7 $] \mid$

If the elapsed value (DT90044 and DT90045) for channel 0 matches K10000, output $Y 7$ turns on.

Figure 74: FPE Program (1) of target value match on instruction "F166"

Example 2:

If the elapsed value (DT90200 and DT90201) for channel 2 matches K20000, output Y 6 turns on.

Figure 75: FP Σ Program (2) of target value match on instruction "F166"

Target value match off instruction (F167)

Example 1:

Figure 76: FP Σ Program (1) of target value match off instruction "F 167"

Example 2:

$\left|\begin{array}{c}X D \\ -(D F)-[F 167 H C 1 R, K 3, K 40000, ~ Y 5]\end{array}\right|$

If the elapsed value (DT90204 and DT90205) for channel 3 matches K40000, output $Y 5$ turns off.

Figure 77: FP Σ Program (2) of target value match off instruction "F167"

6.3.6 Sample Program

Positioning operations with a single speed inverter

Wiring example

Figure 78: FPE High-speed counter function - sample program 1 (wiring)

Operation chart

I/O allocation

I/O No.	Description
X0	Encoder input
X5	Operation start signal
Y0	Inverter operation signal
R100	Positioning operation running
R101	Positioning operation start
R102	Positioning done pulse
R903A	High-speed counter CH0 control flag

Figure 79: FP Σ High-speed counter function - sample program 1 (operation chart)

Program

When X5 is turned on, Y 0 turns on and the conveyor begins moving. When the elapsed value (DT90044 and DT90045) reaches K5000, Y0 turns off and the conveyor stops.

Figure 80: FP Σ High-speed counter function - sample program 1 (program)

Positioning operations with a double speed inverter

Wiring example

Figure 81: FPE High-speed counter function - sample program 2 (wiring)

Operation chart

I/O allocation

I/O No.	Description
X0	E ncoder input
X5	Operation start signal
Y0	Inverter operation signal
Y1	Inverter high-speed signal
R100	Positioning operation running
R101	Positioning operation start
R102	Arrival at deceleration point
R103	Positioning done pulse
R900C	Comparison instruction "<" flag
R903A	High-speed counter CH 0 control flag

Figure 82: FP Σ High-speed counter function - sample program 2 (operation chart)

Program

When X 5 is turned on, Y 0 and Y 1 turn on and the conveyor begins moving. When the elapsed value (DT90044 and DT90045) reaches K4500, Y1 turns off and the conveyor begins decelerating. When the elapsed value reaches K5000, Y0 turns off and the conveyor stops.

Figure 83: FPE High-speed counter function - sample program 2 (program)

6.4 Pulse Output Function

This section explains about the pulse output function of FP Σ.

6.4.1 Overview of Pulse Output Function

Instructions used and controls

The pulse output function enables positioning control by use in combination with a commercially available pulse-string input type motor driver.
Provides trapezoidal (table-shaped) control with the exclusive instruction F171 (SPDH) for automatically obtaining pulse outputs by specifying the initial speed, maximum speed, acceleration/deceleration time, and target value.
The exclusive instruction F171 (SPDH) also enables automatic home return operation.
A dedicated instruction, F172 (PLSH), is available for jogging operation, which causes pulses to be output as long as the execution condition is on. A target value can also be set, so that pulse output stops at the point when the target value is matched.
A dedicated instruction, $\mathbf{F 1 7 4} \mathbf{(P L O H})$, is available that outputs pulses in conformance with the data table, so that positioning control can be carried out in accordance with the data table.

A dedicated instruction, F175 (SPSH), is available for linear interpolation control. This enables pulses to be output using linear interpolation control, by specifying the composite speed, the acceleration/deceleration time, and the target value.
A dedicated instruction, $\mathbf{F 1 7 6}$ (SPCH), is available for circular interpolation control. The user can select one of two circular forming methods, one by specifying the pass positions and the other by specifying a center position. Pulses are output using circular interpolation control, by specifying the various parameters.

Note

The linear interpolation control instruction F175(SPSH) and circular interpolation control instruction F176(SPCH) can be used with the C32T2 control unit only.

Setting the system register

When using the pulse output function, set the channels corresponding to system registers 400 and 401 to "Do not use high-speed counter."

6.4.2 Types of Pulse Output Method

CW/CCW output method

CW pulse

CCW pulse

This is a method in which control is carried out using two pulses, a forward rotation pulse and a reverse rotation pulse.
Figure 84: FP Σ Pulse output function - CW/CCW output method
Pulse/Sign output method (Forward: off/Reverse: on)

This is a method in which control is carried out using one pulse output to specify the speed, and on/off signals to specify the direction of rotatin.
In this mode, forward rotation is carried out when the rotation direction (Sign) signal is off.
Figure 85: FP Σ Pulse output function - Pulse/sign output method 1
Pulse/Sign output method (Forward: on/Reverse: off)

This is a method in which control is carried out using one pulse output to specify the speed, and on/off signals to specify the direction of rotatin.
In this mode, forward rotation is carried out when the rotation direction (S ign) signal is on.
Figure 86: FP \sum Pulse output function - Pulse/sign output method 2

6.4.3 I/O Allocation

Double pulse input driver (CW pulse input and CCW pulse input method)

Two output contact are used as a pulse output for "CW, CCW".
The I/O allocation of pulse output terminal and home input is determined by the channel used. (See the table of specifications on page 6-6.)
Set the control code for F171 (SPDH) instruction to "CW/CCW".

When using CHO

* X3 or other desired input can be specified for the near home input.
Figure 87: FP Σ Pulse output function I/O allocation when using CHO (double pulse input)

When using CH2

* X6 or other desired input can be specified for the near home input.

Figure 88: FP Σ Pulse output function - I/O allocation when using CH 2 (double pulse input)

Single pulse input driver (pulse input and directional switching input method)

One output point is used as a pulse output and the other output is used as a direction output.

The I/O allocation of pulse output terminal, direction output terminal, and home input is determined by the channel used. (See the table of specifications on page 6-6.)
Near home input is substituted by allocating the desired contact and turning on and off the specified bit of special data register DT90052.

Up to two driver systems can be connected.

When using CHO

	FP $\mathbf{\Sigma}$	
$\xrightarrow{\text { Home input }}$	$\begin{aligned} & \text { X2 } \\ & x^{*} \end{aligned}$	
Near home input		Driver
	Y0	$\xrightarrow{\text { Pulse output }}$
	Y1	Directional switching output

* X3 or other desired input can be specified for the near home input.
Figure 89: FP Σ Pulse output function I/O allocation when using CHO (single pulse input)

When using CH2

* X6 or other desired input can be specified for the near home input.
Figure 90: FP Σ Pulse output function I/O allocation when using CH 2 (single pulse input)

6.4.4 Control Mode

Incremental <relative value control>

Outputs the pulses set with the target value.

Selected mode Target value	CW/CCW	PLS and SIGN Forward off/Reverse on	PLS and SIG N Forward on/Reverse off	Elapsed value of high -speed counter
Positive	Pulse output from CW	Pulse output when direction output is off	Pulse output when direction output is on	Addition
Negative	Pulse output from CCW	Pulse output when direction output is on	Pulse output when direction output is off	Subtraction

Absolute <absolute value control>

Outputs a number of pulses equal to the difference between the set target value and the current value.

Selected mode	CW/CCW	PLS and SIGN Forward off/Reverse on	PLS and SIGN Forward on/Reverse off Target	Elapsed value of high-speed counter
Target value greater than current value	Pulse output from CW	Pulse output when direction output is off	Pulse output when direction output is on	Addition
Target value less than current value	Pulse output from CCW	Pulse output when direction output is on	Pulse output when direction output is off	Subtraction

Home return

Until the home position input (X2 or X5) is entered by executing F171 (SPDH) instruction, the pulse is continuously output.
To decelerate the movement when near the home, set the bit corresponding to the special data register DT90052 to off \rightarrow on \rightarrow off with the home position proximity input.
The differential counter clear output can be output when the return to the home position has been completed.

J OG operation

Pulses are output from the specified channel while the trigger for $\mathbf{F} \mathbf{1 7 2}$ (PLSH) instruction is in the on state. Also, the pulse output can be stopped when the specified target value is matched.
The direction output and output frequency are specified by F172 (PLSH) instruction.

6.4.5 Instructions Used with Pulse Output Function

Positioning control instruction (F171) (trapezoidal control)

Automatically performs trapezoidal control according to the specified data table.
Generates a pulse from output Y 0 at an initial speed of 500 Hz , a maximum speed of $5,000 \mathrm{~Hz}$, an acceleration/deceleration time of 300 ms , and a movement amount of 10,000 pulses.

Figure 91: FP Σ Program of positioning control instruction "F 171"
When the program is run, the positioning data table and the pulse output diagram will be as shown below.

Positioning data table

DT100 DT101	Control code *1	$: H 1100$
DT102 DT103	Initial speed *2	$: 500 \mathrm{~Hz}$
DT104 DT105	Maximum speed *2	$: 5,000 \mathrm{~Hz}$
DT106 DT107	Acceleration/deceleration time *3	$: 300 \mathrm{~ms}$
DT108 DT109	Target value *4	$: 10,000$ pulses
DT110 DT111	Pulse stop	$: K 0$

Pulse output diagram

Figure 92: FP Σ Pulse output diagram of "F 171 " instruction
(*1): Control code <H constant>

(*2): Frequency (Hz) "K constant"
1.5 Hz to 9.8 KHz [K1 to K9800 (units: Hz)] (Max. error near 9.8 kHz approximately -0.9 kHz)

* Set "K1" to specify 1.5 Hz .

48 Hz to 100 KHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -3 kHz)
191 Hz to 100 KHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -0.8 kHz .
(*3): Acceleration/deceleration time (ms) "K constant"
With 30 steps: K30 to K32767
With 60 steps: K36 to K32767
(*4): Target value "K constant"
K-2147483648 to K2147483647
Figure 93: FP Σ Control code of " $F 171$ " instruction

Positioning control instruction (F171) (home return)

Performs home return according to the specified data table.
Pulses are output from Y1 and a return to the home position is carried out at an initial speed of 100 Hz , a maximum speed of $2,000 \mathrm{~Hz}$, and an acceleration/deceleration time of 150 ms .

$\left.\begin{array}{rl} 1 \text { (DF }) & {[\text { F1 DMV, H1121, }} \\ & {[\text { DT200 }} \end{array}\right]$		

Figure 94: FP \sum Program of positioning control instruction "F171"
When the program is run, the positioning data table and the pulse output diagram will be as shown below.

Positioning data table

DT200 DT201	Control code *1	$:$ H 1121
DT202 DT203	Initial speed *2	$: 100 \mathrm{~Hz}$
DT204 DT205	Maximum speed *2	$: 2000 \mathrm{~Hz}$
DT206 DT207	Acceleration/deceleration time *3	$: 150 \mathrm{~ms}$
DT208 DT209	Deviation counter clear signal *4	:Not used

Pulse output diagram (when home position proximity input is not used)

Pulse output diagram (when home position proximity input is used)

Figure 95: FP Σ Pulse output diagram of "F 171 " instruction

(*1): Control code <H constant>

Number of acceleration/deceleration steps	
0: Fixed	
0: 30 steps	
1: 60 steps (Can be specified for only Ver. 2.0 or later.)	
Duty (on width)	
0: Duty $1 / 2$ (50\%)	
1: Duty $1 / 4$ (25\%)	
Frequency range	
0: 1.5 Hz to 9.8 kHz	
1: 48 Hz to 100 kHz	
2: 191 Hz to 100 kHz	
Operation mode and output type	
20: Type I home return	CW
21: Type I home return	CCW
22: Type I home return	Direction output off
23: Type I home return	Direction output on
24: Type I home return	CW and deviation counter reset
25: Type I home return	CCW and deviation counter reset
26: Type I home return	Direction output off and deviation counter reset
27: Type I home return	Direction output on and deviation counter reset
30: Type II home return	CW
31: Type II home return	CCW
32: Type II home return	Direction output off
33: Type II home return	Direction output on
34: Type II home return	CW and deviation counter reset
35: Type II home return	CCW and deviation counter reset
36: Type II home return	Direction output off and deviation counter reset
37: Type II home return	Direction output on and deviation counter reset

(*2): Frequency (Hz) "K constant"
1.5 Hz to 9.8 KHz [K1 to K9800 (units: Hz)] (Max. error near 9.8 kHz approximately -0.9 kHz)

* Set "K1" to specify 1.5 Hz .

48 Hz to 100 KHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -3 kHz)
191 Hz to 100 KHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -0.8 kHz .
(*3): Acceleration/deceleration time (ms) "K constant"
With 30 steps: K30 to K32767
With 60 steps: K36 to K32767
(*4): Deviation counter clear signal (ms) "K constant"
0.5 ms to 100 ms [K0 to K100] Set value and error (0.5 ms or less)

Specify "K0" when not using or when specifying 0.5 ms .
If a value is written that exceeds the specified range of the deviation counter clear signal, it will be revised to a value within the range.

Figure 96: FP Σ Control code of "F171" instruction

Tip

Home return operation modes

There are two operation modes for a home return with the FP Σ, a Type I home return and a Type II home return.

Type I home return

The home return input is effective regardless of whether or not there is near home input, whether deceleration is taking place, or whether deceleration has been completed. In this mode, home position proximity input is not used.

When home input is input while the home position proximity input is decelerating
Home position

Type II home return

In this mode, the home return input is effective only after deceleration based on the home position proximity input has been completed.

Home return input effective only during deceleration.

Figure 97: FP Σ Home return operation modes

Pulse output instruction (F172) (J OG operation, target value setting)

This instruction is for J OG operation by obtaining a pulse from the desired output when the execution condition (trigger) turns on.

While XB is in the on state, a pulse of 300 Hz is output from Y 0 .

Figure 98: FP Σ Program of pulse output instruction "F172"
When the program is run, the data table and the pulse output diagram will be as shown below.

Data table

DT300 DT301	Control code *1	$:$ H 1110
DT302 DT303	Frequency *2	$: 300 \mathrm{~Hz}$

Pulse output diagram

Figure 99: FP Σ Pulse output diagram of "F 172 " instruction

(*1): Control code <H constant>

Output method

00: No counting
01: No counting
10: Addition counting
12: Addition counting
13: Addition counting
21: Subtraction counting
22: Subtraction counting
23: Subtraction counting
CW
CCW
CW
Directional output off
Directional output on
CCW
Directional output off Directional output on
(*2): Frequency (Hz) "K constant"
1.5 Hz to $9.8 \mathrm{KHz}[\mathrm{K} 1$ to K 9800 (units: Hz)] (Max. error near 9.8 kHz approximately -0.9 kHz) * Set "K1" to specify 1.5 Hz .

48 Hz to 100 KHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -3 kHz)
191 Hz to 100 KHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz approximately -0.8 kHz .
(*3): Target value (Absolute value) (Can be specified for only Ver. 2.0 or later.)
This is used when setting the target value match stop mode. (Absolute only)
Designate the target value setting in the range indicated below. If an out of range value is designated, the number of pulses output will be different than the desinated value. The target value setting is ignored in the no count mode.

Output method	Range of target values which can be designated
Addition counting	Designate a value larger than the current value.
Subtraction counting	Designate a value smaller than the current value.

Figure 100: FP Σ Control code of " F 172 " instruction

Tip

There are two operation modes in which jogging feed can be carried out with the FP Σ, one in which no target value is specified, and one in which feed stops when the target value is reached.
Normal jogging feed (mode in which no target value is specified)
Pulses are output in accordance with the condition set for the data table, as long as the condition is on.

Data table

DT300	Control code *1	: H1110
DT301	DT302	Frequency *2
DT303	$: 300 \mathrm{~Hz}$	

Mode in which output stops when the target value is reached (supported in

 Ver. 2.0 and subsequent versions)With Ver. 2.0 and subsequent versions of the FP Σ (control unit C32T2), a mode can be used in which a target value is specified for jogging operation, and pulses are stopped when that target value is reached. As shown below, the control code is used to select this mode, and the target value (an absolute value) is then specified in the data table.

Data table

DT300	Control code *1	: H11110
DT301	DT302	Frequency *2
DT303	$: 300 \mathrm{~Hz}$	
DT304	Target value *3	: K1000
DT305		

Pulse output diagram

Pulse stopping

Positioning control instruction (F174) (Data table control)

The positioning performs according to the specified data table in order.

R0	
H以[F1 DMV , H 1200, DT400]	Control code: "H1200"
[F1 DMV , K 1000, DT402]	Frequency $1: 1,000 \mathrm{~Hz}$
[F1 DMV , K 1000, DT404]	Target value 1: 1,000 pulses
[F1 DMV , K 2500, DT406]	Frequency $2: 2,500 \mathrm{~Hz}$
[F1 DMV , K 2000, DT408]	Target value 2: 2,000 pulses
[F1 DMV , K 5000, DT410]	Frequency $3: 5,000 \mathrm{~Hz}$
[F1 DMV , K 5000, DT412]	Target value 3: 5,000 pulses
[F1 DMV , K 1000, DT414]	Frequency $4: 1,000 \mathrm{~Hz}$
[F1 DMV , K 2000, DT416]	Target value 4: 2,000 pulses
R10 ${ }^{[F 1 ~ D M V ~, ~ K ~ 0, ~ D T 418] ~}$	Output pulse stops
НН(DF)-[F174 SP0H,DT400,K0]	Pulse output control

When the execution condition R10 goes on, pulses are output from Y 0 at a frequency of $1,000 \mathrm{~Hz}$, and positioning begins.
At the point when 1,000 pulses have been counted, the frequency switches to 2,500 Hz . Positioning is then carried out sequentially in accordance with the values of the data table, until it stops at the data table containing the pulse output stop value (K0).
When the program is run, the data table and pulse output diagram are as shown below.

Positioning data table

DT400 DT401	Control code *1	$:$ H 1200
DT402 DT403	Frequency 1 *2	$: 1000 \mathrm{~Hz}$
DT404 DT405	Target value 1 *3	$: 1000$ pulses
DT406 DT407	Frequency 2	$: 2500 \mathrm{~Hz}$
DT408 DT409	Target value 2	$: 5000$ pulses
DT410 DT411	Frequency 3	$: 5000$ pulses
DT412 DT413	Target value 3	$: 1000 \mathrm{~Hz}$
DT414 DT415	Frequency 4	$:$ K000 pulses
DT416 DT417	Target value 4	Pulse output stop setting
DT418 DT419	PT00	

(*1): Control code (H constant)

Upper word 0 : Fixed	$\mathbf{H j}_{L^{j}{ }^{j}{ }^{j}{ }^{j}{ }^{j}{ }^{j}{ }^{j}}$
Duty (on width)	
0 : Duty 1/2 (50\%)	
1: Duty 1/4 (25\%)	
Frequency range	
$0: 1.5 \mathrm{~Hz}$ to 9.8 kHz	
1: 48 Hz to 100 kHz	
2: 191 Hz to 100 kHz	
Operation mode	
0 : Incremental Specifies	Specifies the amount of travel (number of pulses)
1: Absolute Specifies	the target value (absolute value)
Output method	
0: CW	(addition counting)
1: CCW	(subtraction counting)
2: PLS +SIGN (forward off)	(addition counting)
3: PLS+SIGN (reverse on)	(subtraction counting)
4: PLS +SIGN (forward on)	(addition counting)
5: PLS +SIGN (reverse off)	(subtraction counting)

(*2): Frequency (Hz) "K constant"
1.5 Hz to 9.8 kHz [K1 to K 9800 (units: Hz)] (Max. error near 9.8 kHz : approx. -0.9 kHz)

* Set "1" to specify 1.5 Hz .

48 Hz to 100 kHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -3 kHz)
191 Hz to 100 kHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -0.8 kHz)
(*3): Target value (K-2147483648 to K2147483647)
The value of the 32 -bit data specified for the target value should be within the range indicated in the table below.

Specification of control code		Range of allowable target values
Operation mode	Output method	
Incremental	Addition counting	Specifies a positive value.
	Subtraction counting	Specifies a negative value.
	Addition counting	Specifies a value larger than the current value
	Subtraction counting	Specifies a value smaller than the current value

Pulse output diagram

When the execution condition (trigger) R10 of the F174 (SPOH) instruction goes on, the high-speed counter control flag R 903A (R903C) goes on. When the elapsed value reaches 10,000 and pulse output stops, R903A (R903C) goes off.

Pulse output instruction (F175) (Linear interpolation)

The linear interpolation controls with two axes according to the specified data table.

-1 (DF)	[F1 DMV, H1000	DT500
	[F1 DMV, K500,	DT502
	[F1 DMV, K5000	DT504
	[F1 DMV, K300,	DT506
	[F1 DMV, K5000	DT508
	[F1 DMV, K2000	DT510
	[F175 SPSH, DT	0, K0

Pulses are output from the X axis (CH 0) and the Y axis (CH 2), so that the composite speed is an initial speed of 500 Hz , the maximum speed is $5,000 \mathrm{~Hz}$, and the acceleration/deceleration time is 300 ms . The two axes are controlled so that a linear path is followed to the target position.
When the program is run, the data table and positioning path are as shown below.

Positioning data table

$\begin{array}{\|l} \hline \text { DT500 } \\ \text { DT501 } \end{array}$	Control code: H1000	(*1)	
$\begin{array}{\|l\|l} \text { DT502 } \\ \text { DT503 } \end{array}$	Composite speed (Initial speed): 500 Hz	(*2)	Setting area
$\begin{array}{\|l\|l} \text { DT504 } \\ \text { DT505 } \end{array}$	Composite speed (Maximum speed): 5000 Hz	(*2)	
DT506 DT507	Acceleration/Deceleration time: 300 ms	(*3)	Designated with user program
$\begin{array}{\|l} \hline \text { DT508 } \\ \text { DT509 } \end{array}$	Target value (X-axis) (CHO): 5000 pulses	(*4)	
DT510 DT511	Target value (Y-axis) (CH2): 2000 pulses		
$\begin{array}{\|l\|l} \hline \text { DT512 } \\ \text { DT513 } \end{array}$	X -axis (CH0) component speed (Initial speed)	(*5)	Operation result storage area
$\begin{array}{\|l\|l\|} \hline \text { DT514 } \\ \text { DT515 } \end{array}$	X-axis (CHO) component speed (Maximum speed)		
DT516 DT517	Y-axis (CH2) component speed (Initial speed)		
$\begin{array}{\|l\|l\|} \hline \text { DT518 } \\ \text { DT519 } \end{array}$	Y-axis (CH2) component speed (Maximum speed)		Parameters for each axis component, calculated due to instruction execution, are stored here.
DT520	X-axis (CHO) frequency range	(*6)	
DT521	Y-axis (CH2) frequency range		
DT522	X -axis (CH 0) number of acceleration/deceleration steps	(*7)	
DT523	Y-axis (CH2) number of acceleration/deceleration steps		

Positioning path

(*1): Control code (H constant)

| 0: Fixed
 Duty (on width)
 0: Duty $1 / 2(50 \%)$
 1: Duty $1 / 4(25 \%)$
 0: Fixed
 Operation mode and output method
 00: Incremental CW/CCW
 02: Incremental PLS + SIGN (forward off / reverse on)
 03: Incremental PLS + SIGN (forward on / reverse off)
 10: Absolute CW/CCW
 12: Absolute PLS + SIGN (forward off / reverse on)
 13: Absolute PLS + SIGN (forward on / reverse off) |
| :--- | :--- |

(*2): Composite speed (Initial speed, Maximum speed) $(\mathbf{H z})<K$ constant>
1.5 Hz to 100 kHz [K1 to K100000]

However, 1.5 Hz is for an angle of 0 deg or 90 deg only.
Also, specify K1 when specifying 1.5 Hz .
If the component speed drops lower than the minimum speed for each frequency range, then the speed will become the corrected component speed, so be careful. (See *6)
When simultaneously using a high-speed counter, periodical interrupt or PLC link, do not set to 60 kHz or higher.
If initial speed is set equal to maximum speed, pulses will be output with no acceleration/deceleration.
(*3): Acceleration/deceleration time (ms) "K constant"
K0 to K32767
If this is 0 , pulses will be output for the initial speed (composite speed) as is, with no acceleration/deceleration.
(*4): Target value
K-8388608 to K8388607
When operating only one axis,
a) In incremental mode, set the target value for the axis which will not be operated to 0 .
b) In absolute mode, set the target value for the axis which will not be operated the same as the current value.
(*5): Component speed (Initial speed and maximum speed of each axis)
This is stored as 2 words in real numbers type.

$$
\begin{aligned}
& X \text {-axis component speed }=\frac{(\text { Composite speed }) \times(X \text {-axis movement distance })}{\sqrt{\left((X \text {-axis movement distance })^{2}+(Y \text {-axis movement distance })^{2}\right)}} \\
& Y \text {-axis component speed }=\frac{(\text { Composite speed }) \times(Y \text {-axis movement distance })}{\sqrt{\left((X \text {-axis movement distance })^{2}+(Y \text {-axis movement distance })^{2}\right)}}
\end{aligned}
$$

Example:
Even if the initial speed is corrected (See *6), the calculation value will be stored as is in the operation result storage area.

(*6): Frequency range

The system automatically selects the frequency range for each component of each axis.
Range 0: 1.5 Hz to 9.8 kHz
Range 1: 48 Hz to 100 kHz
Range 2: 191 Hz to 100 kHz
a) If maximum speed $\leqq 9800 \mathrm{~Hz}$

If initial speed $<1.5 \mathrm{~Hz}$, initial speed is corrected to 1.5 Hz , and range 0 is selected.
If initial speed $\geqq 1.5 \mathrm{~Hz}$, range 0 is selected.
b) If $9800 \mathrm{~Hz}<$ maximum speed $\leqq 100000 \mathrm{~Hz}$,

If initial speed $<48 \mathrm{~Hz}$, initial speed is corrected to 48 Hz , and range 0 is selected.
If $48 \mathrm{~Hz} \leqq$ initial speed $<191 \mathrm{~Hz}$, range 1 is selected.
If initial speed $\geqq 191 \mathrm{~Hz}$, range 2 is selected.
(*7): Number of acceleration/deceleration steps
The system automatically calculates the number of acceleration/deceleration steps in the range 0 to 60 steps.
If the operation result is 0 , pulses are output for the initial speed (composite speed) as is, with no acceleration/deceleration.
The number of acceleration/deceleration steps is found using the formula:
acceleration/deceleration time (ms) x component initial speed (Hz).
Example:
With incremental, initial speed 300 Hz , maximum speed 5 kHz , acceleration/deceleration time 0.5 s , CH 0 target value $1000, \mathrm{CH} 2$ target value 50
CH 0 component initial speed $=\frac{300 \times 1000}{\sqrt{\left(1000^{2}+50^{2}\right)}}=299.626 \mathrm{~Hz}$
CH 2 component initial speed $=\frac{300 \times 50}{\sqrt{\left(1000^{2}+50^{2}\right)}}=14.981 \mathrm{~Hz}$
CH 0 number of acceleration/deceleration steps $=500 \times 10^{-3} \times 299.626 \fallingdotseq 147.8 \Rightarrow 60$ steps
CH 2 number of acceleration/deceleration steps $=500 \times 10^{-3} \times 14.981 \doteqdot 7.4 \Rightarrow 7$ steps

Note
The linear interpolation control instruction can be used with the C32T2 control unit only.

Pulse output instruction (F176) (Circular interpolation)

The circular interpolation controls with two axes according to the specified data table.
This instruction calculates the component speed at each scan, and corrects it while moving along the circular. If the scan time is shorter than the specified frequency timing by more than 10 times, the constant scan function should be used, and if the scan time is longer than the specified frequency timing, the instruction should be written in an interrupt program and used in period interrupts.
$\left.\begin{array}{|lll}\text { R12 } & {[\text { F1 DMV, H10, }} & \text { DT600 }\end{array}\right]$

Assume that the execution conditions for this instruction always hold.
When the execution conditions are off, pulse output stops.
Pulses are output from the X axis $(\mathrm{CH} 0)$ and the Y axis $(\mathrm{CH} 2)$ at a composite speed of $2,000 \mathrm{~Hz}$, and the two axes are controlled so that a circular path is followed to the target position.
In the program, operation is being carried out in the mode in which absolute and pass positions are specified. Pulses are output from the current position ($\theta 60^{\circ}, \mathrm{Xs}=5000$, $Y s=8660$) using circular interpolation control, and when the pass position ($\theta-20^{\circ}, \mathrm{Xp}$ $=9396, Y p=-3420$) has been passed, pulse output stops at the target position ($\theta-30^{\circ}$, $X e=8660, Y e=-5000)$.

Note

Assume that the execution conditions for this instruction always hold. When the execution conditions are off, pulse output stops.

When the program is run, the data table and positioning path are as shown below.

Positioning data table

Pass position setting method

$\begin{array}{\|l\|} \hline \text { DT600 } \\ \text { DT601 } \end{array}$	Control code: H10	(*1)	
$\begin{array}{\|l} \hline \text { DT602 } \\ \text { DT603 } \end{array}$	Composite speed: 500 Hz	(*2)	
$\begin{aligned} & \hline \text { DT604 } \\ & \text { DT605 } \end{aligned}$	Targetvalue (X-axis) (CHO): 8660 pulses	7	Setting area
$\begin{array}{\|l\|} \hline \text { DT606 } \\ \text { DT607 } \end{array}$	Targetvalue (Y - axis) (CH2): -5000 pulses		with user pro- gram
$\begin{array}{\|l\|} \hline \text { DT608 } \\ \text { DT609 } \\ \hline \end{array}$	Pass value (X-axis) (CHO): 9396 pulses		
$\begin{array}{\|l} \hline \text { DT610 } \\ \text { DT611 } \end{array}$	Pass value (Y-axis) (CH2): -3420 pulses		
$\begin{array}{\|l} \hline \text { DT612 } \\ \text { DT613 } \end{array}$	Radius: 10000 pulses		Operation result storage area
$\begin{array}{\|l\|} \hline \text { DT614 } \\ \text { DT615 } \end{array}$	$\begin{gathered} \text { X-axis (CHO) } \\ \text { Center position: } 0 \text { pulse } \end{gathered}$		Parameters for each axis component, calculated due to in-
$\begin{array}{\|l} \hline \text { DT616 } \\ \text { DT617 } \end{array}$	$Y \text {-axis (CH2) }$ Center position: 0 pulse		

Center position setting method

$\begin{aligned} & \hline \text { DT600 } \\ & \text { DT601 } \end{aligned}$	Control code: H110	(*1)$(* 2)$	Setting area
$\begin{aligned} & \hline \text { DT602 } \\ & \text { DT603 } \end{aligned}$	Composite speed: 2000 Hz		
$\begin{aligned} & \hline \text { DT604 } \\ & \text { DT605 } \end{aligned}$	Target value (X-axis) (CHO): 8660 pulses	(*3)	
$\begin{aligned} & \hline \text { DT606 } \\ & \text { DT607 } \end{aligned}$	Target value (Y - axis) (CH2): -5000 pulses	(*3)	
$\begin{aligned} & \hline \text { DT608 } \\ & \text { DT609 } \end{aligned}$	X -axis (CH H) Center position: 0 pulse		
$\begin{aligned} & \hline \text { DT610 } \\ & \text { DT611 } \end{aligned}$	Y -axis (CH2) Center position: 0 pulse		
$\begin{aligned} & \hline \text { DT612 } \\ & \text { DT613 } \end{aligned}$	$\begin{gathered} \text { Radius: } \\ 10000 \text { pulses } \end{gathered}$		Operation result storage area storage area

Positioning path

Counterclockwise direction
(Left rotation)

Clockwise direction (Right rotation)

Let CH 0 be the X -axis, and CH 2 be the Y -axis.

Fv: Composite speed	$O(X o, Y o):$ Center point (Center position)	
Fx:	X-axis component speed	$S(X s, Y s):$ Start point (Current position)
Fy: Y-axis component speed	P (Xp,Yp): Pass point (Pass position)	
r:	Radius	$E(X e, Y e):$ End point (Target position)
$F x=F v \sin \theta=F v \frac{\|Y e-Y o\|}{r}$		

(*1): Control code (H constant)

0: Fixed	
Operation connection mode(*4)	
0: Stop	
1: Continue	
Rotation direction (*5)	
0 : Clockwise direction (Right rotation)	
1: Counterclockwise direction (Left rotation)	
Circular shape method (*6)	
0: Pass position setting method	
1: Center position setting method	
Operation mode	and output method
00: Incremental	CW/CCW
02: Incremental	PLS +SIGN (forward off / reverse on)
03: Incremental	PLS + SIGN (forward on / reverse off)
10: Absolute	CW/CCW
12: Absolute	PLS + SIGN (forward off / reverse on)
13: Absolute	PLS + SIGN (forward on / reverse off)

(*2): Composite speed (Frequency) "K constant"
100 Hz to 20 kHz [K100 to K20000]
(*3): Target position and pass position
K-8388608 to K8388607
(*4): Operation connection mode
Stop:
When stop (0) is specified, it will stop when the target position is reached.

Continue:

When the following circular interpolation data table is overwritten when continue (1) is specified after circular interpolation action begins, the following circular interpolation begins when the first circular interpolation that was started up finishes (target position reached). To finish, specify stop (0) for this flag (operation connection mode) after the last circular interpolation action has started.
(*5): Rotation direction
Pulses are output according to the designated direction. Operation differs, as indicated below, depending on the pass position and rotation direction setting.

S: Current position P: Pass position E: Target position
\cdots Operation due to calculation result

(*6): Circular shape method

Pass position setting method:

The center position and the radius of the circular are calculated by specifying the pass and target positions for the current position.

Center position setting method:

The radius of the circular is calculated by specifying the center and target positions for the current position.

Note

The circular interpolation control instruction can be used with the C32T2 control unit only.

Note

Assume that the execution conditions for this instruction always hold. When the execution conditions are off, pulse output stops.

If you use one-shot relay (ex.: R101 below), pls refer to the following program by using R903A and R903C in order to make internal relay hold. (ex.: R102 below.)

Sample Program

[^2]
Pulse output control instruction (F0)

This instruction is used for resetting the built-in high-speed counter, stopping the pulse outputs, and setting and resetting the home position proximity input.
Specify this $\mathbf{F 0}$ (MV) instruction together with the special data register DT90052.
Once this instruction is executed, the settings will remain until this instruction is executed again.

Example 1: Enable the home position proximity input during home return operations and begin deceleration.
In the program, the home position proximity input is enabled in step (1) and 0 is entered just after that in step (2) to perform the preset operations.

Figure 101: FPE Program 1 of pulse output control instruction " F 0 "
Example 2: Performing a forced stop of the pulse output.

Figure 102: FP Σ Program 2 of pulse output control instruction "F 0"

Elapsed value write and read instruction (F1)

This instruction is used to read the pulse number counted by the built-in high-speed counter.
Specify this F1 (DMV) instruction together with the special data register DT90044.
The elapsed value is stored as 32 -bit data in the combined area of special data registers DT90044 and DT90045.
Use only this F1 (DMV) instruction to set the elapsed value.

Example 1: Writing the elasped value

Set the initial value of $K 3000$ in the high-speed counter.

Figure 103: FP Σ Program 1 of elapsed value write and read instruction "F1"

Example 2: Reading the elapsed value

$|$| X8 |
| :--- |
| H DF $)$ [F1 DMV, DT90044, DT100] $\|$Reads the elapsed value of the
 high-speed counter to DT100 and
 DT101. |

Figure 104: FP Σ Program 2 of elapsed value write and read instruction "F1"

Tip

The area DT90052 for writing channels and control codes is allocated as shown below.
Control codes written with an $\mathbf{F O}(\mathbf{M V})$ instruction are stored by channel in special data registers DT90190 to DT90193.

High -speed counter control flag area of FP Σ

For information on the special data register for high-speed counter function and pulse output function, see pages 6-5 and 6-6.

6.4.6 Sample Program for Positioning Control

Wiring example

Figure 105: FP Σ Pulse output function - sample program (wiring)

Note

When the stepping motor input is a 5 V optical coupler type, connect a 2 k Ω 1/4 W resister.

Table of I/O allocation

I/O No.	Description	I/O No.	Description
X2	Home sensor input	XD	Overrnning signal
X3	Near home sensor input	Y0	Pulse output CW
X8	Positioning start signal (+)	Y1	Pulse output CCW
X9	Positioning start signal (-)	R10	Positioning in progress
XA	Home return start signal	R11	Positioning operation start
XB	J OG start signal (+)	R12	Positioning done pulse
XC	JOG start signal (-)	R903A	High- speed counter control flag for CH0

Relative value positioning operation (plus direction)

When X8 turns on, the pulse is output from CW output " Y 0 " of specified channel " CHO ".

Figure 106: FP Σ Sample program - relative value positioning operation (+direction)

Program

Figure 107: FP Σ Sample program - relative value positioning operation (program)

Pulse output diagram

Figure 108: FP Σ Sample program - pulse output diagram

Relative value positioning operation (minus direction)

When X9 turns on, the pulse is output from CCW output " Y 1" of specified channel CH0.

Figure 109: FP Σ Sample program - relative value positioning operation (- direction)

Program

Figure 110: FP Σ Sample program - relative value positioning operation (program)

Pulse output diagram

Figure 111: FP Σ Sample program - pulse output diagram

Absolute value positioning operation

When X1 is turned on, pulses are output from CW output "Y0" or CCW output " Y 1 " of specified channel CH 0 . If the current value at that point is larger than " 22,000 ", the pulses are output from Y1, and if the value is smaller than " 22,000 ", the pulses are output from Y2.

Regardless of the current value, its movement is towards position " 22,000 ."
Figure 112: FP Σ Sample program - absolute value positioning operation

Program

Figure 113: FP Σ Sample program - absolute value positioning operation (program)

Pulse output diagram

Figure 114: FP Σ Sample program - pulse output diagram

Home return operation (minus direction)

When XA turns on, the pulse is output from CCW output " Y 1 " of specified channel " CHO " and the return to home begins. When X3 turns on, deceleration begins, and when X2 turns on, home return is completed. After the return to home is completed, the elapsed value area "DT90044 and DT90045" are cleared to 0.

Figure 115: FP Σ Sample program - home return operation (- direction)

Program

Figure 116: FPI Sample program - home return operation (program)

Pulse output diagram

Figure 117: FP Σ Sample program - home return operation (pulse output diagram)

Home return operation (plus direction)

When XA turns on, a pulse is output from CW output " Y 0 " of specified channel " CHO " and the return to home begins. When X3 turns on, deceleration begins, and when X2 turns on, home return is completed. After the return to home is completed, the elapsed value area "DT90044 and DT90045" are cleared to 0.

Figure 118: FP Σ Sample program - home return operation (+ direction)

Program

Figure 119: FP Σ Sample program - home return operation (program)

Pulse output diagram

Figure 120: FP Σ Sample program - home return operation (pulse output diagram)

J OG operation (plus direction)

While X 8 is in the on state, a pulse is output from CW output " $Y 0$ " of specified channel "CH0".

Program

Figure 121: FPE Sample program - JOG operation (+ direction) (program)

Pulse output diagram

Figure 122: FP Σ Sample program - JOG operation (pulse output diagram)

J OG operation (minus direction)

While XC is in the on state, a pulse is output from CCW output " Y 1" of specified channel "CHO".

Program

Figure 123: FP Σ Sample program - JOG operation (- diagram) (program)

Pulse output diagram

Figure 124: FP Σ Sample program - JOG operation (pulse output diagram)

Emergency stop (over limit)

If $X D$ turns off while a pulse is being output from $Y 0$, the output of the pulse is stopped.

Program

Figure 125: FPE Sample program - emergency stop (program)

6.5 PWM Output Function

This section explains about the PWM output function of FP Σ.

6.5.1 Overview of PWM Output Function

PWM output function

With the F173 (PWMH) instruction, the pulse width modulation output of specified duty ratio is obtained.

Setting the system register

When using the PWM output function, set the channels " CH 0 and CH 2 " corresponding to system registers 400 and 401 to "Do not use high-speed counter."

6.5.2 Instruction Used with PWM Output Function

PWM output instruction (F173)

While X 6 is in the on state, a pulse with a period of 502.5 ms and duty ratio of 50% is output from Y 0 of specified channel " CH 2 ".

Figure 126: FP Σ PWM output instruction "F173" (program)
When the program is run, the data table will be as shown below.

Data table

DT100	Control code *1	:K 1
DT101	Duty *2	$: 50 \%$

*1: Specify the control code by setting the K constant.

Resolution of 1000

K	Frequency $\mathbf{(H z)}$	Period (ms)
K0	1.5	666.7
K1	2.0	502.5
K2	4.1	245.7
K3	6.1	163.9
K4	8.1	122.9
K5	9.8	102.4
K6	19.5	51.2
K7	48.8	20.5
K8	97.7	10.2
K9	201.6	5.0
K10	403.2	2.5
K11	500.0	2.0
K12	694.4	1.4
K13	1.0 k	1.0
K14	1.3 k	0.8
K15	1.6 k	0.6
K16	2.1 k	0.5
K17	3.1 k	0.3
K18	6.3 k	0.2
K19	12.5 k	0.1

K	Frequency $\mathbf{(H z)}$	Period $(\mathbf{m s})$
K20	15.6 k	0.06
K21	20.8 k	0.05
K22	25.0 k	0.04
K23	31.3 k	0.03
K24	41.7 k	0.02

*2: Specification of duty (specify using K constant)
If the control code is K0 to K19, the duty is K0 to K999 (0.0\% to 99.9\%).
If the control code is K20 to K24, the duty is K0 to K990 (0\% to 99\%).
Values are specified in units of 1% (K10) (digits below the decimal point are rounded off).
Note
If a value outside the specified range is written for the duty area while the instruction is being executed, the frequency that is output will be uncorrected. Written data is not corrected, however.

Chapter 7

Communication Cassette

7.1 Communication Functions of FP Σ 7-3
7.2 Communication Cassette 7-6
7.3 Attachment of Communication Cassette 7-10
7.4 Wiring of Communication Cassette 7-11

7.1 Communication Functions of FP Σ

This section explains about the communication functions of the optional communication cassette.

7.1.1 Functions of Communication Cassette

There are three types of communication functions made possible by the FPI communication cassette, as described below.

Computer link

The computer link is used to carry out communication with a computer connected to the PLC that has a transmission right. Instructions (command messages) are output to the PLC, and the PLC responds (sends response messages) based on the received instructions.
A MEWNET exclusive protocol called "MEWTOCOL-COM" is used to exchange data between the computer and PLC. Two communication methods are available, 1:1 and $1: \mathrm{N}$. A network using the $1: \mathrm{N}$ connection is called a C-NET.
The PLC sends back responses automatically in reply to commands from the computer, so no program is necessary on the PLC side in order to carry out communication.

Figure 127: FP Σ Computer link function

Applicable communication cassette

For 1:1 communication . . . 1-channel RS232C type (Part No. FPG-COM1)
2-channel R S232C type (P art No. FPG-COM2)
For 1:N communication ... 1-channel RS 485 type (Part No. FPG -COM3)

General-purpose serial communication

General-purpose serial communication enables data to be sent back and forth between an image processing device connected to the COM. port and an external device such as a bar code reader.
Reading and writing of data is done using a ladder program in the FP Σ, while reading and writing of data from an external device connected to the COM. port is handled through the FP Σ data registers.

Figure 128: FP Σ General-purpose serial communication function

Applicable communication cassette

For 1:1 communication . . . 1-channel RS232C type (Part No. FPG-COM1) 2-channel RS 232C type (P art No. FPG-COM2)
For 1:N communication ... 1-channel RS 485 type (Part No. FPG -COM3)

PLC link

Data is shared with PLCs connected through the MEWNET, using dedicated internal relays "Link relays (L)" and data registers "Link registers (LD)".
When using link relays, if the link relay contact for one PLC goes on, the same link relay also goes on in each of the other PLCs connected to the network.
With link registers, if the contents of a link register are rewritten in one PLC, the change is made in the same link register of each of the other PLCs connected to the network. With a PLC link, the status of the link relays and link registers in any one PLC are fed back to all of the other PLCs connected to the network, so control of data that needs to be consistent throughout the network, such as target production values and type codes, can easily be implemented to coordinate the data, and all of the units are booted at the same timing.

Link relay

When the link relay "LO" of the master station (No.1) is turned on, that signal is converted by the ladder programs of the other stations, and the Y 0 of the other stations are output.

Link register

If a constant of 100 is written to LD0 of the master station (No. 1), the contents of LD0 in the other station (No. 2) are also changed to a constant of 100.
Figure 129: FP Σ PLC link function

Applicable communication cassette

For 1:N communication ... 1-channel RS 485 type (Part No. FPG -COM3)

7.2 Communication Cassette

This section explains about the optional communication cassette for FP .

7.2.1 Type of Communication Cassette

The communication cassette contains the following three types, which can be selected based on the application involved.

1-channel RS232C type (Part No. : FPG -COM1)

This communication cassette is a 1-channel unit with a five-wire RS232C port.
It supports 1:1 computer links and general-purpose serial communication. RS/CS control is possible.

Terminal layout

Abbreviation	Name	Signal direction
SD	Transmitted data	Unit \rightarrow External device
RD	Received data	Unit \leftarrow External device
RS	Request to Send	Unit \rightarrow External device
CS	Clear to Send	Unit \leftarrow External device
SG	Signal Ground	-

Figure 130: FP $\Sigma 1$-channel RS232C type communication cassette

2-channel RS232C type (Part No. : FPG -COM2)

This communication cassette is a 2 -channel unit with a three-wire RS232C port. It supports 1:1 computer links and general-purpose serial communication.
Communication with two external devices is possible.

Terminal layout

Abbreviation	Name	Signal direction
S1	Transmitted data 1	Unit \rightarrow External device
R1	Received data 1	Unit \leftarrow External device
S2	Transmitted data 2	Unit \rightarrow External device
R2	Received data 2	Unit \leftarrow External device
SG	Signal Ground	-

[^3]
1-channel RS485 type (Part No. : FPG -COM3)

This communication cassette is a 1-channel unit with a two-wire RS 485 port. It supports 1:N computer links and general-purpose serial communication.
Terminal layout
FP:

Abbreviation	Name	Signal direction
$\boldsymbol{+}$	Transmission line (+)	-
-	Transmission line (-)	-
$\mathbf{+}$	Transmission line (+)	-
-	Transmission line (-)	-
\mathbf{E}	Terminal station setting	-

7.2.2 Names and Principle Applications of the Ports

The tool port provided as a standard feature of the FP Σ is treated as the COM. 0 port. The ports in which the communication cassettes are installed are treated as the COM. 1 port and COM. 2 port. The principle applications of the various ports are as described below.

Port name	When using only the FP Σ contorl unit	When the 1-channel RS232C type has been added	When the 2-channel RS232C type has been added	When the 1-channel RS485 type has been added		
COM. 0 port	Tool port Computer link					
COM. 1 port	-	Computer link General- purpose serial communication	Computer link General-purpose serial communication	Computer link General-purpose serial communication PLC link		
COM. 2 port	-	Computer link General-purpose serial communication				-

Notes

- Communication using MEWTOCOL-COM is possible with ports and tool ports for which "Computer link" is noted above. With MEWTOCOL-COM, the same commands are supported on all three channels, and frames of up to $\mathbf{2 , 0 4 8}$ bytes (header <) are supported.
- General-purpose serial communication is possible only with the COM. 1 port and COM. 2 port.

7.2.3 Communication Specifications of Communication Cassette

Serial communication specifications (1:1 communication) (*Note 1)

Item	Specification
Communication method	Half-duplex communication
Synchronous method	Start-stop synchronous system
Transmission line	RS232C
Transmission distance (Total length)	$15 \mathrm{~m} / 49.21 \mathrm{ft}$.
Transmission speed (Baud rate)	2,400 bits/s to 115.2 k bits/s (*Note 2)
Transmission code	ASCII
Transmission data format	Stop bit: 1-bit/2 - bit, Parity: None/Even/Odd Data length (Character bits): 7-bit/8-bit (*Note 2)
Interface	Conforming to RS232C (Connection using terminal block)

Notes

1) The RS232C type of communication cassette is necessary in order to use the serial communication function (1:1 communication).
2) The transmission speed (baud rate) and transmission format are specified using the system registers.

Serial communication specifications (1:N communication) (*Note 1)

Item	Specification
Communication method	Two- wire half- duplex communication
Synchronous method	Start- stop synchronous system
Transmission line	Twisted pair cable or VCTF
Transmission distance (Total length)	Max. 1,200 m/3,937 ft. (*Notes 4 and 5)
Transmission speed (Baud rate)	2,400 bits/s to 115.2 k bits/s (19,200 bits/s when a C - NET adapter is connected.) (*Notes 2, 4 and 5)
Transmission code	ASCII
Transmission data format	Stop bit: 1-bit/2 - bit, P arity: None/E ven/Odd Data length (Character bits): 7-bit/8-bit (*Note 2)
Number of units (stations)	Max. 99 units (stations) (32 units (stations) max. when a C - NET adapter is connected.) (*Notes 3, 4 and 5)
Interface	Conforming to RS485 (Connection using terminal block)

1) The RS485 type of communication cassette is necessary in order to use the serial communication function (1:N communication).
2) The transmission speed (baud rate) and transmission format are specified using the system registers.
3) Unit (Station) numbers are specified using the system registers. Up to 31 units (stations) can be specified using the switches on the control unit.
4) When connecting a commercially available device that has an RS485 interface, please confirm operation using the actual device. In some cases, the number of units (stations), transmission distance, and transmission speed (baud rate) vary depending on the connected device.
5) The values for the transmission distance, transmission speed (baud rate), and number of units (stations) should be within the values noted in the graph below.

When using a transmission speed of 2,400 bits $/ \mathrm{s}$ to 38.4 k bits $/ \mathrm{s}$, you can set up to a maximum of 99 units (stations) and a maximum transmission distance of $1,200 \mathrm{~m}$.

PLC link function specifications ${ }^{*}$ Note 1)

Item	Specification
Communication method	Token bus
Transmission method	Floating master
Transmission line	Twisted pair cable or VCTF
Transmission distance (Total length)	$1,200 \mathrm{~m} / 3,937 \mathrm{ft}$.
Transmission speed (Baud rate)	115.2 kbps
Number of units (stations)	Max. 16 units (stations) (*Note 2)
PLC link capacity	Link relay: 1,024 points, Link register: 128 words
Interface	Conforming to RS485 (Connection using terminal block)

1) The RS485 type of communication cassette is necessary in order to use the PLC link function.
2) Unit (Station) numbers are specified using the switches on the control unit or the system registers.

7.3 Attachment of Communication Cassette

This section explains about the attachment procedure of optional communication cassette.

7.3.1 Attachment Procedure

1. Insert a screwdriver under the cover to remove it.

Figure 133: FP Σ Communication cassette attachment procedure 1
2. Install the communication cassette.

Figure 134: FPE Communication cassette attachment procedure 2
3. Plug in the communication connector.

Figure 135: FP Σ Communication cassette attachment procedure 3

Turn off the power supply to the control unit before installing the communication cassette.

7.4 Wiring of Communication Cassette

This section explains about the wiring of optional communication cassette.

7.4.1 Wiring the Connector with the Communication Cassette

The communication connector (provided with the communication cassette) has a screw - type terminal block. Use the following for wiring.

Figure 136: FP Σ Communication connector

Accessory communication connector

The communication connector made by Phoenix Contact Co. should be used.

Number of pin	Model No. of Phoenix Contact C 0.	
	Model No.	Product No.
5 pins	$M C 1,5 / 5-\mathrm{ST}-3,5$	1840396

Suitable wire (Twisted wire)

Size	Cross-sectional area
AWG \#28 to 16	$0.08 \mathrm{~mm}^{2}$ to $1.25 \mathrm{~mm}^{2}$

Pole terminal with a compatible insulation sleeve

If a pole terminal is being used, the following models are marketed by Phoenix C ontact Co.

Manufacturer	Cross-sectional area	Size	Product number
Phoenix Contact Co.	$0.25 \mathrm{~mm}^{2}$	AWG \#24	Al $0,25-6 \mathrm{YE}$
	$0.50 \mathrm{~mm}^{2}$	AWG \#20	Al $0,50-6 \mathrm{WH}$
	$0.75 \mathrm{~mm}^{2}$	AWG \#18	Al $0,75-6 \mathrm{GY}$
	$1.00 \mathrm{~mm}^{2}$	AWG \#18	Al 1-6 RD

Pressure welding tool for pole terminals

Manufacturer	Model No. of Phoenix Contact Co.	
	Model No.	Product No.
Phoenix Contact Co.	CRIMPFOX UD6	1204436

7.4.2 Tool for Tightening Communication Connector Terminal Block

When tightening the terminals of the communication connector, use a screwdriver "P hoenix Contact C o., P roduct No. 1205037, blade size of 0.4 2.5, model No. SZS 0,4 x 2,5" or screwdriver "P art No. AFP 0806". The tightening torque should be 0.22 to 0.25 $\mathrm{N} \cdot \mathrm{m}$ or less.

7.4.3 Wiring Method

Procedure:

1. Remove a portion " $7 \mathrm{~mm} / 0.276 \mathrm{in}$." of the wire's insulation.

Figure 137: FP Σ Communication connector wiring method 1
2. Insert the wire into the terminal block until it contacts the back of the block, and then tighten the screw clockwise to fix the wire in place.

Figure 138: FP Σ Communication connector wiring method 2

7.4.4 Cautions Regarding Wiring

The following items should be observed, taking care not to cut or disconnect the wiring.

- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the terminal block socket construction, if the wire closes upon counter-clockwise rotation, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

CORRECT
(Clockwise)

Figure 139: Cautions regarding wiring

Chapter 8

Communication Function 1 Computer Link

8.1 Computer Link 8-3
8.2 Connection Example with External Device 8-11
8.3 Computer Link (1:N communication) 8-18

8.1 Computer Link

This section explains about overview of computer link function.

8.1.1 Overview of Function

Figure 140: FP Σ Overview of computer link function

What is the computer link?

A computer link is a function that carries out communication between a computer and PLC, making it possible to monitor and control the PLC operating status from a computer.
Conversation is carried out between the two by instructions (commands) being sent from the computer to the PLC, and the PLC replying (sending response messages) back to the computer.
A MEWNET exclusive protocol called "MEWTOCOL-COM" is used to exchange data between the computer and PLC.
The communication speed and transmission format are specified using system registers No. 413 (COM. 1 port) and No. 414 (COM. 2 port).

Program for computer link

To use a computer link, a program should be created that enables command messages to be sent and response messages to be received on the computer side. No communication program is required on the PLC side.
Programs for the computer side should be written in BASIC or C language, based on the MEWTOCOL-COM format. MEWTOCOL-COM contains the commands used to monitor and control PLC operation.

8.1.2 Explanation of Operation when Using a Computer Link

Command and Response

Instructions pertaining to the PLC are called "commands". These should be issued by the computer, to the PLC.
Messages sent back to the computer from the PLC are called "responses". When the PLC receives a command, it processes the command regardless of the sequence program, and sends a response back to the computer. The computer uses the response to confirm the results of the command being executed.

ME WTOCOL -COM sketch

Communication is carried out in a conversational format, based on the MEWTOCOL COM communication procedures.
Data is sent in ASCII format.
The computer has the first right of transmission.
The right of transmission shifts back and forth between the computer and PLC each time a message is sent.

Figure 141: FP Σ MEWTOCOL-COM

8.1.3 Format of Command and Response

Command message

Items necessary for commands should be noted in the text segment, and the unit number specified before sending the command.

Figure 142: FP Σ Command message (format)

(1) Start code (Header)

Commands must always have a "\%" (ASCII code: H25) or a "<" (ASCII code: H3C) at the beginning of a message.

(2) Unit No.

The unit number of the PLC to which you want to send the command should be specified. When using 1:1 communication, "01" should be specified.

(3) Text

The content differs depending on the command. The content should be noted in all upper-case characters, following the fixed formula for that particular command.

Figure 143: FP Σ Command message (text)

(4) Check code

This is the BCC (block check code) used to detect errors using horizontal parity. It should be created so that it targets all of the text data from the start code to the last text character. The BCC starts from the start code and checks each character in sequence, using the exclusive OR operation, and replaces the final result with character text. It is normally part of the calculation program, and is created automatically.
The parity check can be skipped by entering " * * " (ASCII code: H2A2A) instead of the BCC.

(5) End code (Terminator)

Messages must always end with a " C_{R} " (ASCII code: HOD).

Notes

Precautions when writing messages

- The method for writing text segments in the message varies depending on the type of command.
- If there is a large number of characters to be written, they may be divided and sent as several commands. If there is a large number of characters in the value that was loaded, they may be divided and several responses sent.

Response message

The PLC that received the command in the previous page sends the results of the processing to the computer.

Figure 144: FP Σ Response message (format)

(1) Start code (Header)

A "\%" (ASCII code: H25) or "<" (ASCII code: H3C) must be at the beginning of a message. The response must start with the same start code that was at the beginning of the command.

(2) Unit No.

The unit number of the PLC that processed the command is stored here. If 1:1 communication is being used, " 01 " will be stored here.

(3) Text

The content of this varies depending on the type of command. The value should be read based on the content. If the processing is not completed successfully, an error code will be stored here, so that the content of the error can be checked.

Figure 145: FP Σ Response message (text)
(4) Check code

This is the BCC (block check code) used to detect errors using horizontal parity. The BCC starts from the start code and checks each character in sequence, using the exclusive OR operation, and replaces the final result with character text.
(5) End code (Terminator)

There is always a " ${ }_{R}$ " (ASCII code: HOD) at the end of the message.

Notes

Precautions when reading data

- If no response is returned, the command may not have arrived at the PLC, or the PLC may not be functioning. Check to make sure all of the communication specifications, such as the communication speed, data length, and parity, match between the computer and the PLC.
- If the received response contains a "!" instead of a "\$", the command was not processed successfully. The response will contain a communication error code, so confirm the content of the error.
- The unit number and command name will be the same for a command and its corresponding response, as shown in the figure below. This makes the correspondence between the command and the response clear.

Figure 146: FPE Command \& response message (note)

8.1.4 Types of Commands that Can Be Used

Command name	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on and off status of contacts. -Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contacts on and off. - Specifies only one point. -Specifies multiple contacts. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MD or MC".
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16-point on and off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controllerand error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

Tip

- Commands and responses used with the FPE have a dedicated header (start code) added to the "MEWTOCOL-COM" communication protocol of the FP series PLC.
- The contents of the specified header vary depending on the communication conditions.
- With the FPE, in addition to ordinary MEWTOCOL-COM, an expansion header is also supported that enables single frames of up to 2,048 characters to be sent.

Type of header	No. of characters that can be sent in $\mathbf{1}$ frame
$\%$	Max. 118 characters
$<$	Max. 2048 characters

- The number of characters that can be sent is restricted by the type of header and the command.

8.1.5 Setting the Communication Parameters when Using a Computer Link

Setting of communication speed (baud rate) and communication format

The settings for the COM. port communication speed and communication format are specified using the FPWIN GR programming tool. Select "PLC Configuration" under "Options" on the menu bar, and click on the "COM. 1 and 2 P ort" tab. There are separate settings for COM. 1 and COM. 2.

PLC Configuration setting dialog box

Figure 147: FPWIN GR PLC Configuration setting dialog box

No. 412 Communication (Comm.) Mode

Select the COM. port operation mode.
Click on the button and select "C omputer Link" from the displayed pull-down menu.
No. 413 (for COM. 1 port), No. 414 (for COM. 2 port) Communication Format setting

The default settings for the communication format are as shown at the right.
To change the communication format to match an external device connected to the COM. port, enter the settings for the various items.

Char. Bit 8 Bits
Parity Odd
Stop Bit 1 Bit
Terminator CR
Header.................... . STX not exist

No. 415 Baud rate (communication speed) setting

The default setting for the communication speed for the various ports is "9600 bps". Change the communication speed to match the external device connected to the COM. port.
Click on the button, and select one of the values from " $2400 \mathrm{bps}, 4800 \mathrm{bps}, 9600 \mathrm{bps}$, $19200 \mathrm{bps}, 38400 \mathrm{bps}, 57600 \mathrm{bps}, 115200 \mathrm{bps}$ " on the displayed pull-down menu.

8.1.6 Restriction

Either the computer link mode or the general-purpose communication mode can be used for the communication cassette COM. port.
There are no restrictions when multiple ports are used.

8.2 Connection Example with External Device

This section explains about the connection example with external device for computer link.

8.2.1 Connection Example with Extemal Device (1:1 communication with computer)

Outline

To use a 1:1 computer link with a computer, an RS232C cable is used to set up a 1:1 connection between the FPI and the computer. Communication is carried out by the PLC sending responses to commands sent from the computer side.

Figure 148: FP Σ Computer link-connection example (computer)

Communication cassette used for 1:1 communication

The following types of communication cassettes can be used for 1:1 computer link communication.

Name	Description	Part No.
FP Σ Communication cassette 1-channel RS232C type	This communication cassette is a 1-channel unit with a five-wire RS232C port. It supports 1:1 computer links and general- purpose serial communication. RS/CS control is possible.	FPG-COM1
FP Σ Communication cassette 2-channel RS232C type	This communication cassette is a 2-channel unit with a three- wire RS232C port. It supports 1:1 computer links and general- purpose serial communication. Communication with two external devices is possible.	FPG-COM2

Setting of system register

To carry out 1:1 communication using a computer link, the system registers should be set as shown below.

Settings when using the COM. 1 port

No.	Name	Set value
No. 410	Unit No. for COM. 1 port	1
No. 412	Communication mode for COM. 1 port	Computer link
No. 413	Communication format for COM. 1 port	Character bit: 8 bits Parity check: Odd Stop bit: 1 bit Terminator: CR Header: STX not exist
No. 415	Baud rate setting for COM. 1 port	9600 bps to 115200 bps

Settings when using the COM. 2 port

No.	Name	Set value
No. $\mathbf{4 1 1}$	Unit No. for COM.2 port	1
No. $\mathbf{4 1 2}$	Communication mode for COM.2 port	Computer link
No. $\mathbf{4 1 4}$	Communication format for COM.2 port	Character bit: $\ldots .8$ bits Parity check: dd Stop bit: $\ldots \ldots . . .1$ bit Terminator: CR Header: STX not exist
No. 415	Baud rate setting for COM.2 port	9600 bps to 115200 bps

The communication format and baud rate (transmission speed) should be set to match the connected computer.

Connection example with computer

When using the 1 -channel RS232C type of communication cassette

Figure 149: FP Σ Computer link - connection example 1 (computer)

When using the 2-channel RS232C type of communication cassette

Figure 150: FP Σ Computer link - connection example 2 (computer)

Programming for a computer link

To use a computer link, a program should be created that enables command messages to be sent and response messages to be received on the computer side. The PLC automatically sends back a response to commands. No communication program is required on the PLC side.
Also, if a software program such as PCWAY is used on the computer side, PLC data can be easily compiled, without having to think about the MEWTOCOL-COM.

8.2.2 Connection Example with External Device (1:1 communication with programmable display "GT10/GT30")

Outline

A 1:1 computer link with a programmable display "GT10/GT30" connects the FP Σ and a programmable display, using an RS232C cable. Communication is carried out by the PLC sending responses to commands from the programmable display side.
No program is required for communication. Operation can be carried out using the programmable display, simply by setting the mutual communications settings.

Figure 151: FP Σ Computer link - connection example (GT10)

Communication cassette used for 1:1 communication

The following types of communication cassettes can be used for 1:1 computer link communication.

Name	Description	Part No.
FP \sum Communication cassette 1-channel RS232C type	This communication cassette is a 1-channel unit with a five-wire RS232C port. It supports 1:1 computer links and general-purpose serial communication. RS/CS control is possible.	FPG-COM1
FP \sum Communication cassette 2-channel RS232C type	This communication cassette is a 2-channel unit with a three-wire R S232C port. It supports 1:1 computer links and general-purpose serial communication. Communication with two external devices is possible.	FPG-COM2

Setting of system register

To carry out 1:1 communication using a computer link, the system registers should be set as shown below.

Communic ation format setting for FP Σ side

- Settings when using the COM. 1 port

No.	Name	Set value
No. $\mathbf{4 1 0}$	Unit No. for COM.1 port	1
No. $\mathbf{4 1 2}$	Communication mode for COM.1 port	Computer link
No. $\mathbf{4 1 3}$	Communication format for COM.1 port	Character bit: . . . 8 bits Parity check: Odd Stop bit: bit Terminator: CR Header: STX not exist
No. $\mathbf{4 1 5}$	Baud rate setting for COM.1 port	19200 bps

- Settings when using the COM. 2 port

No.	Name	Set value
No. $\mathbf{4 1 1}$	Unit No. for COM.2 port	1
No. $\mathbf{4 1 2}$	Communication mode for COM.2 port	Computer link
No. $\mathbf{4 1 4}$	Communication format for COM.2 port	Character bit:8 bits Parity check: Odd Stop bit: bit Terminator: CR Header: STX not exist
No.415	Baud rate setting for COM.2 port	19200 bps

The communication format and baud rate (transmission speed) should be set to match the connected programmable display.

Communication format setting for GT10/GT30

When the GT10/GT30 is shipped from the factory, the communication format for GT10/GT30 settings are as shown below. "GT Configuration" settings should be changed to match the application at hand.

Item	Description
Baud rate	19200 bps
Data length	8 bits
Stop bit	1 bit (fixed)
Parity bit	Odd

Communication condition settings are specified using the parameter settings for the programmable display and the "GT Configuration" item in the GTWIN screen creation tool. For detailed information, please see the technical manual for the GT10/GT30.

GTWIN GT Configuration settings "Communication Parameters" screen

Figure 152: GTWIN GT Configuration setting screen (communication prameters)

Connection example with programmable display "GT10/GT30"

When using the 1 -channel RS232C type of communication cassette

FP Σ side (5-pin)			GT10/GT30 side ($5-\mathrm{pin}$)	
Pin name	Signal name	Abbre.	Symbol	Pin No.
SD	Transmitted Data	SD	SD	1
RD	Received Data	RD	RD	2
RS	Request to Send	RS	RS	3
CS	Clear to Send	CS	CS	4
SG	Signal Ground	SG	SG	5

Figure 153: FP Σ Computer link - connection example 1 (GT10)

When using the 2 -channel RS 232C type of communication cassette

FP Σ side (5-pin)			GT10/GT30 side (5-pin)	
Pin name	Signal name	Abbre.	Symbol	Pin No.
S1	Transmitted Data 1	SD	SD	1
R1	Received Data 1	RD	RD	2
S2	Transmitted Data 2	SD	RS	3
R2	Received Data 2	RD	CS	4
SG	Signal Ground	SG	SG	5

Figure 154: FP Σ Computer link - connection example 2 (GT10)

Basic communication area setting for GT10/GT30

To carry out communication with a PLC, the "Basic Communication Area" setting for the internal device area in the PLC reserved by the programmable display in advance should be specified in the configuration settings.

When the GT10/GT30 is shipped from the factory, the basic communication area for GT10/GT30 is set as shown below. "GT Configuration" settings should be changed to match the application at hand.

Item	Description
Word area	DT0 to DT2
Bit area	WR0 to WR2

The basic communication area is changed using the configuration parameter settings for the programmable display and the "GT Configuration" item in the GTWIN screen creation tool.

GTWIN GT Configuration settings "Basic Setup" screen

Figure 155: GTWIN GT Configuration setting screen (basic setup)

8.3 Computer Link (1:N communication)

This section explains about the $1: \mathrm{N}$ communication of computer link.

8.3.1 Overview of 1:N Communication

For a 1:N computer link, the computer and the FPE are connected through a commercially available RS232C - RS485 conversion adapter, and the respective PLCs are wired using an RS485 cable.
Communication is carried out by the command specifying the unit number being sent from the computer side, and the PLC with that unit number sending a response back to the computer.

The unit number of the PLC sending a response is included in the response message.
Figure 156: FP Σ Overview of compute link function ($1: \mathrm{N}$ communication)

Tip

If the FPV is used in combination with a communication cassette (the 1-channel RS485 type), no C-NET adapter is necessary on the PLC side.

8.3.2 Communication Cassette Used for 1:N Communication

The following types of communication cassettes can be used for 1:N communication with a computer link.

Name	Description	Part No.		
FP Σ Communication cassette	This communication cassette is a 1-channel unit with a two- wire R S485 port. It supports 1:N computer links (C - 1-channel RS485 type	FPT), general-purpose serial communication, and a PLC NEOM link.	FPM3	
:---				

8.3.3 Settings of System Register and Unit No.

Setting of system register

To carry out 1:N communication with a computer link, the system registers should be set as shown below.

COM. 1 port settings

No.	Name	Set value
No. 410	Unit No. for COM. 1 port	1 to 99 (Set the desired unit No.)
No. 412	Communication mode for COM. 1 port	Computer Link
No. 413	Communication format for COM.1 port	Character bit: 8 bits P arity check: Odd S top bit: 1 bit Terminator: CR Header: STX not exist
No. 415	Baud rate setting for COM.1 port	9600 bps

The communication format and baud rate (transmission speed) should be set to match the connected computer.

Note

When a C-NET adapter is used, the number of unit (station) is max. 32.

Setting of unit No. (station number)

The "Unit No." parameter for each of the communication ports is set to " 1 " in the system register default settings. There is no need to change this if $1: 1$ communication is being used, but if $1: N$ communication is being used to connect multiple PLCs to transmission line, such as in a C -NET, the "UnitNo." must be specified so that the system can identify the unit targeted for communication.

The PLC that sends a response can be identified by the unit number.
Figure 157: FP Σ Computer link - setting of unit No. (station No.)

Unit No. setting using unit No. (station No.) setting switch

The unit number setting switch is located inside the cover on the left side of the FP Σ control unit. The selector switch and the dial can be used in combination to set a unit number between 1 and 31 .

Figure 158: FP Σ Computer link - unit No. (station No.) setting switch
Relationship between unit No. setting switch and unit numbers

Dial switch position	Unit No.	
	Selector switch: off	Selector switch: on
$\mathbf{0}$	-	16
$\mathbf{1}$	1	17
$\mathbf{2}$	2	18
$\mathbf{3}$	3	19
$\mathbf{4}$	4	20
$\mathbf{5}$	5	21
$\mathbf{6}$	6	22
$\mathbf{7}$	7	23
$\mathbf{8}$	8	24
$\mathbf{9}$	9	25
A	10	26
B	11	27
C	12	28
D	13	29
E	14	30
F	15	31

- The range of numbers that can be set using the unit No. setting switch is from 1 to 31 .
- Setting the unit No. setting switch to " 0 " makes the system register setting valid, so that a unit number between 1 and 99 can be set.

Setting using the system register

The unit number is specified using the unit number setting switch on the side of the FP Σ control unit, or the system register settings. Setting the unit number setting switch to " 0 " makes the system register setting valid
To set unit numbers with the FPWIN GR, select "PLC C onfiguration" under "Option" on the menu bar, and then click on the "COM. P ort" tab. There are two settings, one for the COM. 1 port and one for the COM. 2 port.

PLC Configuration setting dialog box

Figure 159: FPWIN GR PLC Configuration setting dialog box
No. 410 (for COM. 1 port), No. 411 (for COM. 2 port) Unit No. setting
Click on the button, and select a unit number from among the numbers 1 to 99 displayed on the pull-down menu.

Notes

- To make the unit number setting in the FPWIN GR valid, set the unit No. setting switch to " 0 ".
- The unit number setting using the station setting switch is valid only for the communication port of the communication cassette. The unit number for the tool port should be set using the system registers.
- When using the C-NET adapter, the maximum number of station numbers that can be specified is 32 .

8.3.4 Connection with External Device

Connection diagram

Wiring should extend from one unit to the next. Never run two wires from the same unit to two

FPL side (5-pin)
Pin name Signal name Abbre. + Transmission line 1 (+) + - Transmission line 1 (-) - + Transmission line 2 (+) + - - Transmission line 2 (-) - E Terminal station setting E

Figure 160: FP Σ Computer link - connection diagram
With 1 : N communication, the various RS 485 devices are connected using twisted pair cables. The (+) and (-) signals of transmission line 1 and transmission line 2 are connected inside the communication cassette, and either port may be used as COM.1 port.

Setting of terminal station

In the PLC that serves as the final unit (terminal station), the transmission line (-) and the E terminal should be shorted.

Figure 161: FP Σ Computer link - terminal station setting

Chapter 9

Communication Function 2 General-purpose Serial Communication

9.1 General-purpose Serial Communication 9-3
9.2 Overview of Communication with External Devices 9-8
9.3 Connection Example with External Devices 9-16
9.4 Data Transmitted and Received with the FP Σ 9-29
9.5 1:N Communication 9-31
9.6 Flag Operations When Using Serial Communication 9-33
9.7 Changing the Communication Mode of COM. Port 9-37

9.1 General-purpose Serial Communication

This section explains about overview of general-purpose serial communication.

9.1.1 Overview of Function

What is the general-purpose serial communication?

Using the COM. ports, it sends and receives data to and from an external device such as an image processing device or a bar code reader.
Data is read and written using the F P Σ ladder program, and data is read from and written to an external device connected to the COM. port by means of the FP Σ data registers.

Figure 162: FP Σ General-purpose Serial Communication (overview)

Outline of operation

To send data to and receive it from an external device using the general-purpose serial communication function, the "Data transmission" and "Data reception" functions described below are used. The F159 (MTRN) instruction and the "R eception done" flag are used in these operations, to transfer data between the FP Σ and an external device.

Data transmission

Data to be output is stored in the data register used as the transmission buffer (DT), and when the $\mathbf{F} 159$ (MTRN) instruction is executed, the data is output from the COM. port.

The end code specified by the system register is automatically added to the data that has been sent.

The maximum volume of data that can be sent is 2,048 bytes.

Figure 163: FP Σ Data transmission

Data reception

Input data from the COM. port is stored in the received buffer specified by the system register, and the "Reception done" flag goes on. Data can be received whenever the "R eception done" flag is off.

Figure 164: FP Σ Data reception

9.1.2 Program of General-purpose Serial Communication

The F159 (MTRN) instruction is used to send and receive data using the COM. port. The F159 (MTRN) instruction is used only with the FPE, and is an updated version of the earlier F144 (TRNS) instruction that allows multiple communication ports to be accommodated. Please be aware that the earlier F144 (TRNS) instruction cannot be used with the FP Σ.

F159 (MTRN) instruction

Data is sent to and received from an external device through the specified COM. port.

Devices that can be specified for S
Only data registers (DT) can be specified as the transmission buffer.
Devices that can be specified by n WX, WY, WR, WL, SV, EV, DT, LD, I (IO to ID), K, H
Devices that can be specified by D Only the K constants (only K1 and K2)
Figure 165: FP Σ F159 (MTRN) instruction (program)

Transmission of data

The amount of data specified by " n " is sent to the external device from among the data stored in the data table starting with the area specified by "S", through the COM. port specified by "D". Data can be sent with the start code and end code automatically attached. A maximum of 2,048 bytes can be sent. When the above program is run, the eight bytes of data contained in DT101 to DT104, stored in the transmission buffer starting from DT100, are sent from the COM. 1 port.

Reception of data

Reception of data is controlled by turning the reception done flag "R9038 or R 9048 " on and off. The received data is stored in the received buffer specified by the system register. Data can be received when the $\mathbf{F 1 5 9}$ (MTRN) instruction turns the reception done flag "R9038 or R 9048" off.

9.1.3 Communication Parameter Settings when Using General-purpose Serial Communications

Setting of baud rate and communication format

In the default settings, the COM. port is set to the computer link mode. When communication is carried out, system register settings should be entered for the following items.
Settings for the COM. port baud rate and transmission format are entered using the FPWIN GR programming tool. Select "PLC Configuration" under "Option (O)" on the menu bar, and click on the "COM. $1 \& 2$ P ort" tab. There are separate settings for the COM. 1 and COM. 2 ports.

PLC Configuration setting dialog box

Figure 166: FPWIN GR PLC Configuration setting dialog box

No. 412 Communication mode

Select the COM. port operation mode.
Click on the $\boldsymbol{\nabla}$ button, and select "General Communication" from the displayed pulldown menu.

No. 413 (for COM. 1 port), No. 414 (for COM. 2 port) Communication format setting

The default settings for the communication format are as shown at the right. To change the communication format to match the external device connected to the COM. port, enter the appropriate settings for the various items.

Character Bit .. 8 Bits
Parity Odd
Stop bit 1
Terminator CR
Header STX not exist

No. 415 B aud rate setting

The default setting for the baud rates for the ports is "9600 bps". Set the baud rate to match the external device connected to the COM. port.
Click on the - button, and select one of the values from " 2400 bps, 4800 bps, 9600 bps, $19200 \mathrm{bps}, 38400 \mathrm{bps}, 57600 \mathrm{bps}, 115200 \mathrm{bps}$ " on the displayed pull-down menu.

No. 416 (for COM. 1 port), No. 418 (for COM. 2 port)

Starting address for data received

No. 417 (for COM. 1 port), No. 419 (for COM. 2 port)
Buffer capacity setting for data received
To use general-purpose serial communication, the received buffer must be specified. In the default setting, the entire data register area is specified for use as the received buffer. To change the data register area used as the received buffer, specify the starting area using system register No. 416 (No. 418 for the COM. 2 port) and the volume (number of words) using No. 417 (No. 419 for the COM. 2 port). The received buffer layout is as shown below.

[^4]
9.2 Overview of Communication with External Devices

This section explains about the communication "data transmission and data reception" with external devices.

Communication with external device is handled through the data register.

9.2.1 Data Transmission to External Device

Overview of data trans mission

Data to be output is stored in the data register used as the transmission buffer (DT), and when the $\mathbf{F 1 5 9}$ (MTRN) instruction is executed, the data is output from the COM. port.
Figure 168: FP Σ Overview of data transmission

Data table for transmission (transmission buffer)

DT100	K8	When transmission begins: K8 When transmission ends: K0
DT101	H42(B) : H41(A)	
DT102	H44(D) $\mathrm{H} 43(\mathrm{C})$	
DT103	H46(F) : H45(E)	from the low order byte.
DT104	H48(H) : H47(G)	

Data table before transmission

Figure 169: FP Σ Data table for transmission (transmission buffer)

Sample program for data transmission

This program transmits the character "ABCDEFGH" to external device using COM. 1 port.

Figure 170: FP Σ Sample program for data transmission
The program described above is executed in the following sequence.
(1) "ABCDEFGH" is converted to an ASCII code and stored in a data register.
(2) That data is sent from the COM. 1 port using the F159 (MTRN) instruction.

Explanatory diagram

Figure 171: FP Σ Data transmission explanatory diagram

Explanation of data table

This is used as a data table for transmission, starting at the data register specified in " S ".

Figure 172: FPE Data table for transmission
Use an $\mathbf{F O} \mathbf{(M V)}$ or $\mathbf{F 9 5 (A S C)}$ instruction to write the data to be transmitted to the transmission data storage area specified in " S ".

Explanation during transmission

This is used as a data table for transmission, starting at the data register specified in " S ".
When the execution condition of the $\mathbf{F 1 5 9 (M T R N)}$ instruction turns on, operation is as follows when the transmission done flag "R 9039/R 9049" is on:

1. " n " is preset in " S ". The reception done flag "R 9038/R 9048" is turned off, and the reception data number is cleared to " 0 ".
2. The set data is transmitted in order from the lower-order byte in " $\mathrm{S}+1$ " of the table.

- During transmission, the transmission done flag "R 9039/R 9049" turns off.
- If system register 413 or 414 is set to header (start code) with STX, the header (start code) is automatically added to the beginning of the data.
- The terminator (end code) specified in system register 413 or 414 is automatically added to the end of the data.

During this interval the F159(MTRN) instruction cannot be executed.
Figure 173: Explanation during transmission
3. When all of the specified quantity of data has been transmitted, the " S " value is cleared to " 0 " and the transmission done flag "R 9039/R 9049" turns on.
When you do not wish to add the terminator (end code) during transmissions, use one of the following methods:
Specify the number of bytes to be transmitted using a negative number.
If you also do not wish to add an end code to receptions, set system register 413 or 414 to Terminator "None".

Example:

Program for transmitting 8 bytes of data without adding the terminator (end code)

Figure 174: FP Σ Data transmission sample program

Tip

- Do not include the terminator (end code) in the transmission data. The terminator (end code) is added automatically.
- When "STX exist" is specified for the header (start code) in system register 413 or 414 , do not add the header (start code) to the transmission data. The header (start code) is added automatically.
- When using the 1-channel RS232C type communication cassette, transmission does not take place until CS (Clear to Send) turns on. If you are not going to connect to the other device, connect to RS (Request to Send).
- The maximum number of transmission bytes " n " is 2048.
- Contact numbers in parentheses indicate COM. 2 port contacts.

9.2.2 Receiving Data from External Device

Overview of data reception

Figure 175: FP Σ Data reception
Data input from the COM. port is stored in the received buffer specified by the system register, and the "Reception done" flag goes on.
If the "Reception done" flag is off, data can be received at any time.

Sample program for data reception

Data "10 byte" received in the received buffer through the COM. 1 port is read to DT0.

Figure 176: FP Σ Sample program for data reception
The program described above is executed in the following sequence.

1. Data is received from the RS232C device to the received buffer.
2. The reception done contact "R 9038 (R9048)" is turned on.
3. The received data is sent from the received buffer to the area starting with the data register DTO.
4. The $\mathbf{F} 159$ (MTRN) instruction based on the empty data is executed, which resets the buffer writing point and turns off the reception done contact "R 9038 (R 9048)".
The system is then ready to receive the next data.

Figure 177: FP Σ Data reception explanatory diagram

Data table for reception (received buffer)

This shows the status of the data table when the above program is run.

DT200 to DT204 are used as the reception buffer. System register settings are as follows:

- System register 416: K200
- System register 417: K5

Figure 178: FP Σ Data table for reception (received buffer)

Explanation of data table

Data sent from an external device connected to the R S232C port is stored in the data registers that have been set as the reception buffer.

Figure 179: FP Σ Data table for reception
Data registers are used for the reception buffer. Specify the data registers in system registers 416 to 419.
The number of bytes of data received is stored in the starting address of the reception buffer. The initial value is " 0 ".
Received data is stored in the received data storage area in order from the lower-order byte.

Explanation during reception

When the reception done flag R 9038(R9048) is off, operation takes place as follows when data is sent from an external device. (The R9038(R9048) is off during the first scan after RUN).

1. Incoming data is stored in order from the lower-order byte of the 2 nd-word area of the reception buffer.

Header and terminator (Start and end codes) are not stored.

Figure 180: Explanation during reception
2. When the terminator (end code) is received, the reception done flag "R 9038(R 9048)" turns on. Reception of any further data is prohibited.
3. When an $\mathbf{F 1 5 9 (M T R N)}$ instruction is executed, the reception done flag "R 9038(R 9048)" turns off, the number of received bytes is cleared, and subsequent data is stored in order from the lower-order byte.

Tip

To perform repeated reception of data, refer to the following steps.

1. Receive data
2. Reception done (R9038/R 9048: on, reception prohibited)
3. Process received data
4. Execute F159(MTRN) instruction (R9038/R9048: off, reception possible)
5. Receive subsequent data

Preparation of reception

The reception done flag "R9038(R9048)" turns on when data reception from the external device is completed. Reception of any further data is prohibited.
To receive subsequent data, you must execute an $\mathbf{F 1 5 9}$ (MTRN) instruction to turn off the reception done flag "R 9038(R9048)".

To repeatedly perform only reception, specify K0.
R 9038(R9048) also turns off when transmission is performed with a byte number specification.

* The contact numbers in parentheses indicate COM. 2 port contacts.

9.3 Connection Example with External Devices

This section explains about the connection example with external devices.

9.3.1 Connection Example with External Device (1:1 communication with Micro-Imagechecker)

Outline

The FP Σ and Micro-Imagechecker A200/A100 are connected using an RS 232C cable, and the results of the scan are stored in the data registers of the FP Σ.

Figure 181: FP Σ Connection example with external device (micro-imagechecker)
When the scan start code " $\% S^{C}{ }_{R}$ " is sent from the FP Σ side, the scan result is returned from the Micro-Imagechecker as the response.

Communication cassette used with 1:1 communication

The following types of communication cassettes can be used with $1: 1$ general-purpose serial communication.

Name	Description	Part No.
FP Σ Communication cassette 1-channel RS232C type	This communication cassette is a 1-channel unit with a five-wire RS232C port. It supports 1 1 1 computer links and general-purpose serial communication. RS/CS control is possible.	FPG-COM1
FP Σ Communication cassette 2-channel RS232C type	This communication cassette is a 2-channel unit with a three-wire R S232C port. It supports $1: 1$ computer links and general-purpose serial communication. Communica- tion with two external devices is possible.	FPG-COM2

Setting of system register

In the default settings, the COM. port is set to the computer link mode. To carry out $1: 1$ communication using general-purpose serial communication, the system registers should be set as shown below.

Communication format setting for FP Σ

- Settings when using the COM. 1 port

No.	Name	Set value
No. $\mathbf{4 1 2}$	Communication mode	General communication
No. $\mathbf{4 1 3}$	Communication format	Character bit: $\ldots .8$ bits Parity: $\ldots \ldots \ldots .$. . dd Stop bit: bit Terminator: $\ldots \ldots$. CR Header: STX not exist
No. $\mathbf{4 1 5}$	Baud rate	9600 bps
No. $\mathbf{4 1 6}$	Starting address for data received	DT200
No. $\mathbf{4 1 7}$	Buffer capacity setting for data received	100 byte

- Settings when using the COM. 2 port

No.	Name	Set value
No. 412	Communication mode	General communication
No. 414	Communication format	Character bit: 8 bits P arity: dd Stop bit: CR Terminator: STX not exist Header:
No. 415	Baud rate	9600 bps
No. 418	Starting address for data received	DT200
No. 419	Buffer capacity setting for data received	100 byte

Communication format setting for Micro-Imagechecker

To set the communication mode and transmission format settings for the MicroImagechecker, select "5: Communication" under "5: ENVIRONMENT" on the main menu, and set the following items.

No.	Name	Set value
No. 51	Communication mode	Normal Mode
No. 52	RS232C	

Serial communication setting for Micro-Imagec hecker

To enter settings relating to serial communication for the Micro-Imagechecker, select "53: Serial Output" under " 5 : Communication" on " 5 : ENVIRONMENT" of the main menu, and set the following items.

No.	Name	Set value
No. 53	Serial Output	

Tip

- If "Del" is specified for the invalid processing parameter, zero suppression processing will be carried out on the output data, and the output format will be changed. Always make sure "Repl. 0 " is specified.
- When outputting data to an external device, numerical calculation is required, so "Out" should be specified for the "Numerical calculation" parameter.
- When the above settings are specified, data with the contents shown below will be output from the Micro-Imagechecker.

```
1012345 CR
\\ T
    Results of numerical calculation No.1
    Judgment output No.2 0=NG
    Judgment output No.1 1=OK
```


Connection example with Micro-Imagechecker "A200/A100"

- When using the 1 -channel RS232C type of communication cassette

Figure 182: FP Σ Connection example with micro-imagechecker 1
-When using the 2 -channel RS232C type of communication cassette

Figure 183: FP Σ Connection example with micro-imagechecker 2

Procedure of communication

In the following example, the Micro-Imagechecker is connected to the COM. 1 port.

Figure 184: FPE Procedure of communication (micro-imagechecker)

Sample program

In the following example, the Micro-Imagechecker is connected to the COM. 1 port.

Figure 185: FP Σ Sample program (for micro-imagechecker)

The various buffer statuses

The following shows the statuses of the send and received buffers when the sample program is run.

Figure 186: FP Σ Various buffer statuses

9.3.2 Connection Example with External Device (1:1 communication with FP series PLC)

Outline

Connect the FP Σ and the other FP series PLC using the RS232C interface, and carry out communication using the MEWTOCOL-COM communication protocol.

Figure 187: FP Σ Connection example with external device (FP series PLC)
When the data area read command "\%01\#RDD0000000001** C_{R} " is sent from the FP Σ side, the values of the data register of the PLC connected to the system are sent as a response. For example, if the value K100 is stored in DT0 and the value K200 is stored in DT1 of the PLC, "\%01\$RD6400C $8006 \mathrm{~F}_{\mathrm{R}}$ " is sent as a response to the command. If there is an error, "\%01!00** C_{R} " is returned (00 is the error code).
In addition to data area read and write commands, the MEWTOCOL-COM is also provided with contact area reading and writing, and many other commands.

Communication cassette used with 1:1 communication

The following types of communication cassettes can be used with $1: 1$ general-purpose serial communication.

Name	Description	Part No.
FP \sum Communication cassette 1-channel RS232C type	This communication cassette is a 1-channel unit with a five-wire RS232C port. It supports 1 : 1 computer links and general-purpose serial communication. RS/CS control is possible.	FPG-COM1
FP \sum Communication cassette 2-channel RS232C type	This communication cassette is a 2-channel unit with a three-wire RS232C port. It supports 1: 1 computer links and general-purpose serial communication. Communica- tion with two external devices is possible.	FPG-COM2

Setting of system register

In the default settings, the COM. port is set to the computer link mode. To carry out 1 :1 communication using general-purpose serial communication, the system registers should be set as shown below.

Communication format setting for FP Σ

- Settings when using the COM. 1 port

No.	Name	Set value
No. $\mathbf{4 1 2}$	Communication mode	General communication
No. $\mathbf{4 1 3}$	Communication format	Character bit: $\ldots .8$ bits Parity: $\ldots \ldots \ldots .$. . dd Stop bit: bit Terminator: CR Header: STX not exist
No. $\mathbf{4 1 5}$	Baud rate setting	19200 bps
No. $\mathbf{4 1 6}$	Starting address for data received	DT200
No. $\mathbf{4 1 7}$	Buffer capacity setting for data received	100 byte

- Settings when using the COM. 2 port

No.	Name	Set value
No. 412	Communication mode	General communication
No. 414	Communication format	Character bit: 8 bits P arity: dd bit Stop bit: CR Terminator: STX not exist Header:
No. 415	Baud rate setting	19200 bps
No. 418	Starting address for data received	DT200
No. 419	Buffer capacity setting for data received	100 byte

Communication format setting for FP series PLC (FP0, FP1)

No.	Name	Set value
No. 412	Communication mode for COM. port	Computer link
No. 413	Communication format for COM. port	Character bit: 8 bits P arity: Odd Stop bit: 1 bit Terminator: CR Header: STX not exist
No. 414	Baud rate for COM. port	19200 bps

Connection example with FP series PLC (FP0, FP1)

- When using the 1-channel RS232C type of communication cassette

Connection with FP0 COM. port
FPE side (5-pin)
FPO COM. port side (3-pin)

Pin name	Signal name	Abbr.	Symbol
SD	Transmitted Data	SD	S
RD	Received Data	RD	R
RS	Request to Send	RS	G
CS	Clear to Send	CS	
SG	Signal Ground	SG	

Connection with FP1 COM. port
FP1 COM. port side (9-pin)

FP Σ side (5-pin)			Symbol	Pin No.
Pin name	Signal name	Abbr.	FG	1
SD	Transmitted Data	SD	SD	2
RD	Received Data	RD	RD	3
RS	Request to Send	RS	RS	4
CS	Clear to Send	CS	CS	5
SG	Signal Ground	SG	-	6
			SG	7
			-	8
			-	9

Figure 188: FP Σ Connection example with FP series PLC-1

- When using the 2-channel RS232C type of communication cassette

Connection with FPO COM. port

FP Σ side (5-pin)			side (3-pin)
Pin name	Signal name	Abbr.	Symbol
S1	Transmitted Data 1	SD	S
R1	Received Data 1	RD	R
S2	Transmitted Data 2	SD	G
R2	Received Data 2	RD	
SG	Signal Ground	SG	

Connection with FP1 COM. port
FP1 COM. port side (9-pin)

Figure 189: FP Σ Connection example with FP series PLC-2

Procedure of communication

In this example, an FP series PLC is connected to the COM. 1 port, and "K100" is being stored to DT0 of the PLC on the other end, and "K200" to DT1.

Figure 190: FP Σ Procedure of communication (FP series PLC)

Sample program

The following shows an example in which an FP series PLC is connected to the COM. 1 port.

Figure 191: FP Σ Sample program (for FP series PLC)

The various buffer statuses

The following shows the statuses of the send and received buffers when the sample program is run.

Reception buffer			Received number of bytes
DT200	K16		
DT201	H30 (0)	H31 (\%)	Received data is stored in order from the lower-order byte.
DT202	H32 (\$)	H31 (1)	
DT203	H34 (D)	H33 (R)	
DT204	H34 (4)	H36 (6)	
DT205	H30 (0)	H30 (0)	
DT206	H38 (8)	H43 (C)	
DT207	H30 (0)	H30 (0)	
DT208	H46 (F)	H36 (6)	
	tatuses ception is	en complete	

Figure 192: FP Σ Various buffer statuses

Tip

Contents of the response:

If K100 is stored in DT0 and K200 is stored in DT1 of the FP series PLC on the other side, "\%01\$RD6400C 8006F C_{R} " is returned from the FP series PLC on the other side as the response when the program is executed. The received data is stored in the data registers as shown below.

DT4		DT3		DT2		DT1		DT0	
Upper byte	Lower byte								
H30	H30	H34	H36	H44	H52	H24	H31	H30	H25
(0)	(0)	(4)	(6)	(D)	(R)	(\$)	(1)	(0)	(\%)

D	7	DT6		DT5	
Upper byte	Lower byte	Upper byte	Lower byte	Upper byte	Lower byte
H46	H36	H30	H30	H38	H43
(F)	(6)	(0)	(0)	(8)	(C)
	C		e of DT other si	1 in the	PLC on

Extracting the data register values from the PLC on the other side

In the program, the data segment of the response from the PLC on the other side is converted to hexadecimal data using the F72 (AHEX) (hexadecimal ASCII \rightarrow hexadecimal data conversion) instruction and stored in DT50 and DT51, only if the characterstring " $\$ 1$ "stored in DT1 detected as a comparison instruction.

If an error occurs, "\%01!OOj $\mathrm{j} \quad \mathrm{C}_{\mathrm{R}}$ " is returned as the response. (OO is the error code and j j is the BCC.)

9.4 Data Transmitted and Received with the FP Σ

The following four points should be kept in mind when accessing data in the FP E transmission and received buffers.

- Data in the transmission and received buffers, that is being sent and received, is in ASCII code.
- If the transmission format settings indicate that a start code will be used, the code STX (H02) will automatically be added at the beginning of the data being sent.
- An end code is automatically added to the end of the data being sent.
- There is no end code on the data stored in the received buffer.

When sending data:

Data written to the transmission buffer will be sent just as it is.

s

Example: When the data " 12345 " is transmitted as an ASCII code to a device with RS232C port.
Data sent using the F95 (ASC) instruction should be converted to ASCII code data.

Figure 193: FP E Conversion of ASCII code
If DT100 is being used as the transmission buffer, data will be stored in sequential order in the data registers starting from the next register (DT101), in two -byte units consisting of the upper byte and lower byte.

Figure 194: FP Σ Example (transmission buffer)

When receiving data:

The data of received area being read is ASCII code data.
Example: When the data " $12345 C_{R}$ " is transmitted from a device with RS232C port
If DT200 is being used as the received buffer, received data will be stored in the registers starting from DT201, in sequential order of first the lower byte and then the upper byte.

Figure 195: FP Σ Example (received buffer)

9.5 1:N Communication

This section explains about the $1: N$ communication of general-purpose serial communication.

9.5.1 Overview of 1:N Communication

The FP Σ and the external unit with the unit number are connected using an RS485 cable. Using the protocol that matches the external unit, the F159 (MTRN) instruction is used to send and receive data.

Figure 196: FP Σ General-purpose serial communication (1:N communication)

9.5.2 Communication Cassette Used with 1 : N Communication

The following types of communication cassettes can be used with 1 : N general-purpose serial communication.

Name	Description	Part No.		
FP \sum Communication cassette	This communication cassette is a 1-channel unit with a 1-channel RS485 type	two wire RS 485 port. It supports 1 : N computer links (C - NET), general-purpose serial communication, and a PLC link.		FPG-COM3
:---:				

9.5.3 Setting of System Register

The following types of communication cassettes can be used with 1 : N general-purpose serial communication.

Settings when using the COM. 1 port

No.	Name	Set value
No. $\mathbf{4 1 0}$	Unit No.	1 to 32 (Set the desired unit No.)
No. $\mathbf{4 1 2}$	Communication mode for COM.1 port	General communication
No. $\mathbf{4 1 3}$	Communication format for COM.1 port	Character bit: $\ldots .8$ bits Parity check:dd Stop bit: bit Terminator: $\ldots \ldots$. CR Header: STX not exist
No. $\mathbf{4 1 5}$	Baud rate setting	9600 bps
No. $\mathbf{4 1 6}$	Starting address for data received	Set the desired address.
No. $\mathbf{4 1 7}$	Buffer capacity setting for data received	Set the desired capacity. (Max. 2,048 byte)

Settings when using the COM. 2 port

No.	Name	Set value
No. 411	Unit No.	1 to 32 (Set the desired unit No.)
No. 412	Communication mode	General communication
No. 414	Communication format	Character bit: 8 bits P arity check: dd Stop bit: CR Terminator: Header: STX not exist
No. 415	Baud rate setting	9600 bps
No. 418	Starting address for data received	Set the desired address.
No. 419	Buffer capacity setting for data received	Set the desired capacity. (Max. 2,048 byte)

The communication format and baud rate (transmission speed) should be set to match the connected device.

9.6 Flag Operations When Using Serial Communication

This section explains about the operation of "reception done flag" and "transmission done flag" when using serial communication.

9.6.1 When "STX not exist" is Set for Start Code and "CR" is Set for End Code

When receiving data:

Relationship between the various flags "Reception done flag and Transmission done flag" and the F159 (MTRN) instruction

Figure 197: FP Σ Flag operation when receiving data (STX not exit and CR setting)

Half-duplex transmission method should be used for general-purpose serial communication.
Reception is disabled when the reception done flag "R9038 or R 9048 " is on.

When the F159 (MTRN) instruction is executed, the number of bytes received is cleared, and the address (write pointer) returns to the initial address in the reception buffer.

When the F159 (MTRN) instruction is executed, the error flag "R9037 or R9047", reception done flag "R9038 or R 9048 " and transmission done flag "R9039 or R9049" go off.
Duplex transmission is disabled while the $\mathbf{F 1 5 9}$ (MTRN) instruction is being executed. Check the transmission done flag "R9039 or R9049".
Reception stops if the error flag "R9037 or R9047" goes on. To resume reception, execute the $\mathbf{F 1 5 9}$ (MTRN) instruction and turns off the error flag.

Note

Be aware that the reception done flag "R9038 or R9048" changes even while a scan is in progress.

Example: If the reception completed flag is used multiple times as an input condition, there is a possibility of different statuses existing within the same scan. To avoid this, an internal relay should be substituted at the beginning of the program.

9.6.2 When "STX" is Set for Start Code and "ETX" is Set for End Code

When receiving data:

Relationship between the various flags "Reception done flag and Transmission done flag" and the $\mathbf{F 1 5 9}$ (MTRN) instruction

Figure 198: FP Σ Flag operation when receiving data (STX and ETX setting)

The data is stored in the reception buffer in sequential order, but at the point at which the start code is received, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.
Reception is disabled while the reception done flag "R 9038 or R9048" is on.
When the F159 (MTRN) instruction is executed, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.
If there are two start codes, data following the later start code is overwritten and stored in the reception buffer.
The reception done flag "R9038 or R9049" is turned off by the $\mathbf{F 1 5 9}$ (MTRN) instruction. Because of this, if the $\mathbf{F 1 5 9}$ (MTRN) instruction is executed at the same time that the terminal code is received, the reception done flag will not be detected.

When sending data:

Relationship between the various flags "Reception done flag and Transmission done flag" and the F159 (MTRN) instruction

Figure 199: FP Σ Flag operation when sending data (STX and ETX setting)

Start code (STX) and end code (ETX) are automatically added to the data being transmitted, and the data is transmitted to an external device.
When the $\mathbf{F} 159$ (MTRN) instruction is executed, the transmission done flag "R9039 or R 9049" go off.
Duplex transmission is disabled while the F159 (MTRN) instruction is being executed. Check the transmission done flag "R 9039 or R 9049".

9.7 Changing the Communication Mode of COM. Port

An F159 (MTRN) instruction can be executed to change between "general communication mode" and "computer link mode". To do so, specify "H8000" in "n" (the number of transmission bytes) and execute the instruction.

Changing from "general port" to "computer link"

Changing from "computer link" to "general port"

Figure 200: FP Σ Changing the communication mode of COM. port
RS232C port selection flag in R 9032 or R 9042.
Turns on when "general communication mode" is selected.

Note

When the power is turned on, the mode of use selected in system register No. 412 takes effect.

Chapter 10

Communication Function 3 PLC Link Function

10.1 PLC Link 10-3
10.2 Communication Parameter Settings 10-5
10.3 Monitoring When a PLC Link is Being Used 10-17
10.4 Connection Example of PLC Link 10-18
10.5 PLC Link Response Time 10-22

10.1 PLC Link

This section explains about the overview of PLC link function.

10.1.1 Overview of Function

What is the PLC Link?

The PLC link is an economic way of linking two PLCs, using a twisted-pair cable.
Data is shared between the PLCs using a link relay (L) and a link register (LD).
With a PLC link, the statuses of the link relays and link registers for one PLC are automatically fed back to other PLCs on the same network.
The PLC link is notsetto be used in the defaultsettings, so the setting of system register No. 412 should be changed to "PLC Link" in order to use the function.
The various PLC units and link areas are allocated using the system registers. For more detailed information, please see page 10-5, "Communication Parameter Settings".

The link relays and link registers of the various PLCs contain areas where data is sent and areas where data is received, and these are used to share data among the PLCs.
Figure 201: FP Σ PLC link function (overview)

Overview of PLC link operation

Link relay: Turning on a link relay contact in one PLC turns on the same link relay in all of the other PLCs on the same network.
Link register: If the contents of a link register in one PLC are changed, the values of the same link register are changed in all of the PLCs on the same network.

Link relay
If the link relay LO for the unit (No.1) is turned on, the status change is fed back to the ladder programs of other units, and the YO of the other units is output.

Link register

If a constant of 100 is written to the LDO of unit No. 1, the contents of LDO in unit No. 2 are also changed to a constant of 100.
Figure 202: FP Σ Overview of PLC link operation

10.2 Communication Parameter Settings

This section explains about communication parameter settings when using PLC link function.

10.2.1 Setting of Communication Mode

In the default settings, the COM. ports are not set so that communication is enabled. Communication mode settings are entered using the FPWIN GR programming tool. Select "P LC Configuration" under "Opption (O)" on the menu bar, and click on the "COM. 1 Port" tab.

PLC Configuration setting dialog box

Figure 203: FPWIN GR - PLC Configuration setting dialog box

No. 412 Communication Mode (Comm. Mode)

Select the communication mode of COM. port.
Click on the button, and select "PC Link" from the displayed pull-down menu.

Tip

When using a PLC link, the communication format and baud rate are fixed as shown below.

- Communication format; Character Bit: 8 bits, Parity: Odd, Stop Bit: 1
- Baud rate: 115200 bps

10.2.2 Setting of Unit No.

Unit No.

In the default settings in the system registers, the "Unit No." parameter for the communication port is set to " 1 ".
In a PLC link that connects multiple PLCs on the same transmission line, the "Unit No." parameter must be set in order to identify the various PLCs.

Figure 204: FPE Unit No. for PLC link
The unit number is a number assigned to a given PLC in order to identify that particular PLC. Unit numbers should be specified in such a way that the same number is not used for more than one PLC on the same network.

Setting method

The unit number is specified using the system registers settings in the FPWIN GR programming tool, and the unit No. setting switch on the side of the FP Σ control unit. Setting the unit No. setting switch to " 0 " makes the system register settings valid.

To set unit numbers with the FPWIN GR, select "P LC C onfiguration" under "Option" on the menu bar, and then click on the "COM. 1 Port" tab.

PLC Configuration setting dialog box

Figure 205: FPWIN GR - PLC Configuration setting dialog box

No. 410 Unit No. setting (for COM. 1 port)

Click on the \rightarrow button, and select a unit number from among the numbers 1 to 16 displayed on the pull-down menu.

Unit number setting using unit No. setting switch

The unit No. setting switch is located inside the cover on the left side of the FP Σ control unit. The selector switch and the dial can be used in combination to set a unit number between 1 and 16 .

Figure 206: FP Σ Unit No. setting switch

Relationship between unit number setting switch and unit numbers

Dial switch position	Unit No.	
	Selector switch: off	Selector switch: on
$\mathbf{0}$	-	16
$\mathbf{1}$	1	
$\mathbf{2}$	2	
$\mathbf{3}$	3	
$\mathbf{4}$	4	
$\mathbf{5}$	5	
$\mathbf{6}$	6	
$\mathbf{7}$	7	
$\mathbf{8}$	8	
$\mathbf{9}$	9	
A	10	
B	11	
C	12	
D	13	
E	14	
F		
	15	

- The range of numbers that can be set using the unit No. setting switch is from 1 to 16.
- Setting the unit No. setting switch to " 0 " makes the system register settings valid.

Notes

- To make the unit number setting in the FPWIN GR valid, set the unit No. setting switch to " 0 ". If the station number setting switch has been set to 0 , the system register settings and SYS 1 instruction setting become valid.
- When using the PLC link function, set the range of unit numbers as 1 to 16.
- Station numbers should be set sequentially and consecutively, starting from 1, with no breaks between them. If there is a missing station number, the transmission time will be that much longer.
- If fewer than $\mathbf{1 6}$ units are linked, the transmission time can be shortened by setting the largest station number in system register no. 47.
- Station numbers can also be set using the SYS1 instruction.
- The priority order for station number settings is the station number setting switch > system registers > SYS 1 instruction.

10.2.3 Allocation of Link Relay and Link Register

Link area allocation

The PLC link function is a function that involves all of the PLCs that have been booted in the MEWNET-W0 mode.

To use the PLC link function, a link area needs to be allocated. Set the allocations for both the link relays and link registers.

Link area allocations are specified using system registers.

System registers

No.	Name	Set value
No. $\mathbf{4 0}$	Range of link relay used for PLC link	0 to 64 words
No. $\mathbf{4 1}$	Range of link register used for PLC link	0 to 128 words
No. $\mathbf{4 2}$	Starting no. for link relay transmission	0 to 63
No. $\mathbf{4 3}$	Link relay transmission size	0 to 64 words
No. $\mathbf{4 4}$	Starting no. for link register transmission	0 to 127
No. $\mathbf{4 5}$	Link register transmission size	0 to 127 words

Relation of system register set value to link area

Link relay

Figure 207: FP Σ Link relay allocation
Link register

Figure 208: FP Σ Link register allocation

Tip

Link areas consist of link relays and link registers for PLC link and used with respective control units.
The link relay which can be used in an area for PLC link is maximum 1,024 points, and the link register is maximum 128 words.

Example of link area allocation

The areas for PLC link is divided into transmitted areas and received areas. The link relays and link registers are transmitted from the transmitted area to the received area of a different FPE. Link relays and link registers with the same numbers as those on the transmission side must exist in the received area on the receiving side.

Link relay allocation

Figure 209: Example of link area allocation

System register

No.	Name	Set value of various control unit			
		No. 1	No. 2	No. 3	No. 4
No. 40	Range of link relay used for PLC link	64	64	64	64
No. 42	Starting no. for link relay transmission	0	20	40	0
No. 43	Link relay transmission size	20	20	24	0

Link register allocation

Figure 210: Example of link register allocation

System register

No.	Name	Set value of various control unit			
		No. 1	No. 2	No. 3	No.4
No. 41	Range of link register used for PLC link	128	128	128	128
No. $\mathbf{4 4}$	Starting no. for link register transmission	0	40	80	0
No. 45	Link register transmission size	40	40	48	0

When link areas are allocated as shown above, the No. 1 transmitted area can be transmitted to the No. 2, No. 3 and No. 4 received areas. Also, the No. 1 received area can receive data from the No. 2 and No. 3 transmitted areas. No. 4 is allocated as a received area only, and can receive data from No. 1, No. 2, and No. 3, but cannot transmit it to other unit.

Using only a part of the link area

Link areas are available for PLC link, and link relay 1,024 points (64 words) and link register 128 words can be used. This does not mean, however, that it is necessary to reserve the entire area. Parts of the area which have not been reserved can be used as internal relays and internal registers.

Link relay allocation

No.	Name	No. 1
No. 40	Range of link relay used for PLC link	50
No. 42	Starting no. for link relay transmission	20
No. 43	Link relay transmission size	20

With the above setting, the 14 words (224 points) consisting of WL50 to WL63 can be used as internal relays.

Figure 211: Using only a part of the link relay area

Link register allocation

No.	Name	No. 1
No. 41	Range of link register used for PLC link	100
No. 44	Starting no. for link register transmission	40
No. 45	Link register transmission size	40

With the above setting, the 28 words consisting of LD100 to LD127 can be used as internal registers.

Figure 212: Using only a part of the link register area

Precautions when allocating link areas

If a mistake is made when allocating a link area, be aware that an error will result, and communication will be disabled.

Avoid overlapping transmitted areas

When sending data from the transmitted area to the received area of another FP Σ, there must be a link relay and link register with the same number in the received area on the receiving side. In the example shown below, there is an area between No. 2 and No. 3 which is overlapped, and this will cause an error, so that communication cannot be carried out.

Link relay allocation

Figure 213: Precautions when allocating link relay area

System register

No.	Name	Set value of various control unit		
		No. 1	No. 2	No. 3
No. $\mathbf{4 0}$	Range of link relay used for PLC link	64	64	64
No. $\mathbf{4 2}$	Starting no. for link relay transmission	0	20	30
No. 43	Link relay transmission size	20	20	34

Unallowable allocations

Allocations such as those shown below are not possible, either for link relays or link registers.

Allocations in which the transmitted area is split

Transmitted area
Received area
Transmitted area

Figure 214: Unallowable allocation example 1
Allocations in which the transmitted and received areas are split into multiple segments

Transmitted area	Received area
Received area	Transmitted area
Transmitted area	Received area
Received area	Transmitted area

Figure 215: Unallowable allocation example 2

10.2.4 Setting the Largest Station Number for a PLC Link

The largest station number can be set using system register no. 47 .
Sample settings

No. of units linked	Setting contents
When linked with $\mathbf{2}$ units	1st unit: station no. 1 is set 2nd unit: station no. 2 is set A largest station no. of 2 is set for each.
When linked with $\mathbf{4}$ units	1st unit: station no. 1 is set 2nd unit: station no. 2 is set 3rd unit: station no. 3 is set 4th unit: station no. 4 is set A largest station no. of 4 is set for each.
When linked with n units	Nth unit: station no. n is set A largest station no. of N is set for each.

Notes

- Station numbers should be set sequentially and consecutively, starting from 1, with no breaks between them. If there is a missing station number, the transmission time will be that much longer.
- If fewer than 16 units are linked, the transmission time can be shortened by setting the largest station number in system register no. 47.
- The same value should be set for the largest station numbers of all of the PLCs that are linked.
- If there are fewer than 16 units linked and the largest station number has not been set (default =16), or the largest station number has been set but the station number settings are not consecutive, or the station number settings are consecutive but there is a station for which the power supply has not been turned on, the response time for the PLC Link (the link transmission cycle) will be longer. For further information, please refer to page 10-22, "PLC Link Response Time".

10.3 Monitoring When a PLC Link is Being Used

10.3.1 Monitoring Using Relays

When using a PLC link, the operation status of the links can be monitored using the following relays.
Transmission assurance relay R9060 to R906F (correspond to station No. 1 to 16)
If the transmission data from a different station is being used with the various PLCs, check to make sure the transmission assurance relay for the target station is on before using the data.

Relay No.	R9060	R9061	R9062	R9063	R9064	R9065	R9066	R9067	R9068	R9069	R906A	R906B	R906C	R906D	R906E	R906F
Station No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Conditions for on/off	ON: When the PLC link is normal OFF: If transmission is stopped, a problem has occurred, or a PLC link is not being used															

Operation mode relay R9070 to R907F (correspond to station No. 1 to 16)

The PLC operation modes (RUN/PROG.) of other stations can be ascertained for any given PLC.

Relay No.	R9070	R9071	R9072	R9073	R9074	R9075	R9076	R9077	R9078	R9079	R907A	R907B	R907C	R907D	R907E	R907F
Station No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Conditions for on/off	ON: When the unit is in the RUN mode OFF: When the unit is in the PROG. mode															

PLC link transmission error relay R9050

This goes on if a problem is detected during transmission.

Relay No.	R9050															
Station No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Conditions for on/off	ON: When a transmission error has occurred in the PLC link, or when there is an error in the setting for the PLC link area OFF: When there are no transmission errors															

Tip

Monitoring the PLC link status
The PLC link status items, such as the transmission cycle time and the number of times that errors have occurred, can be monitored by pressing down the PLC link switch on the FPWIN GR Status Monitor screen.

It is not possible to carry out remote programming of other linked PLCs using the programming tool.

10.4 Connection Example of PLC Link

This section explains about the connection example of PLC link.

10.4.1 Using a PLC Link with Three FP Σ Units

In the example shown here, link relays are used, and when X1 of the control unit of unit No. 1 goes on, Y 0 of the control unit of unit No. 2 goes on. When $X 2$ of the control unit of unit No. 1 goes on, YO of the control unit of unit No. 3 goes on.

Figure 216: FP Σ Connection when using a PLC link with three FP Σ units

Communication cassettes used with the PLC link

The following types of communication cassettes can be used with the PLC link function.

Name	Description	Part No.
FP Σ Communication cassette 1-channel RS485 type	This communication cassette is a 1-channel unit with a two- wire RS485 port. It supports 1:N computer links (C-NET), general-purpose serial communication, and a PLC link.	FPG - COM3

Setting of system register

When using a PLC link, the transmission formatand baud rate are fixed as shown below.

- Communication format; Character Bit: 8 bits, Parity: Odd, Stop Bit: 1
- Baud rate: 115200 bps

Set the communication mode and the unit No. using the system registers.
Setting of unit No. and communication mode
Setting of FPE "unit No. 1"

No.	Name	Set value
No. 410	Unit No. for COM.1 port	1
No. 412	Communication mode for COM.1 port	PC link

Setting of FP Σ "unit No. 2"

No.	Name	Set value
No. 410	Unit No. for COM.1 port	2
No. 412	Communication mode for COM.1 port	PC link

Setting of FPE "unit No. 3"

No.	Name	Set value
No. 410	Unit No. for COM.1 port	3
No. 412	Communication mode for COM.1 port	PC link

Tip
Make sure the same unit number is not used for more than one of the PLCs connected through the PLC link function.

Allocation of link area

Link relay allocation

FP Σ
(Unit No. 1)

FP Σ

(Unit No. 2)

FPE (Unit No. 3)

Figure 217: FP Σ Link relay allocation when using a PLC link with three FP Σ units

System register

No.	Name	Set value of various control unit		
		No. 1	No. 2	No. 3
No. 40	Range of link relay used for PLC link	64	64	64
No. $\mathbf{4 2}$	Starting no. for link relay transmission	0	20	40
No. 43	Link relay transmission size	20	20	24

Link register allocation

Figure 218: FP Σ Link register allocation when using a PLC link with three FP Σ units

System register

No.	Name	Set value of various control unit		
		No. 1	No. 2	No. 3
No. 41	Range of link register used for PLC link	128	128	128
No. $\mathbf{4 4}$	Starting no. for link register transmission	0	40	80
No. 45	Link register transmission size	40	40	48

Setting the largest station number

No.	Name	Set value of various control unit		
		No.1	No.2	No.3
No. 47	Largest station number setting for PLC link	3	3	3

Connection diagram

FP Σ
(Unit No. 1)

The final unit (terminal station) should be shorted between the transmission line $(-)$ and the E terminal.

FPD
(Unit No. 2)

FPE
(Unit No. 3)

The final unit (terminal station) should be shorted between the transmission line $(-)$ and the E terminal.

Figure 219: FP Σ Connection diagram when using a PLC link with three FP Σ units

10.4.2 Sample Programs

Program of "unit No. 1" FPE contorl unit

When X1 is input, the L0 of the link relay goes on, and when X2 is input, the L1 of the link relay goes on.

Figure 220: Sample program - unit No. 1

Program of "unit No. 2" FPE contorl unit

When the LO of the link relay goes on, YO is output.

Figure 221: Sample program - unit No. 2

Program of "unit No. 3" FPS contorl unit

When the L1 of the link relay goes on, Y0 is output.

Figure 222: Sample program - unit No. 3

10.5 PLC Link Response Time

10.5.1 PLC Link Response Time

The maximum value for the transmission time (T) of one cycle can be calculated using the following formula.

The various items in the formula are calculated as described below.
(1) Ts (transmission time per station)

Ts = scan time + Tpc (PLC link sending time)
Tpc =Ttx (sending time per byte) \times Pcm (PLC link sending size)
Ttx $=1 /$ transmission speed $\times 1000 \times 11 \mathrm{~ms}--$ approx. 0.096 ms at 115.2 kbps
$\mathrm{Pcm}=23+$ (number of relay words + number of register words) $\times 4$
(2) TIt (link table sending time)

TIt = Ttx (sending time per byte) \times Ltm (link table sending size)
Ttx $=1$ / transmission speed $\times 1000 \times 11 \mathrm{~ms}-\mathrm{Cl}^{-}$approx. 0.096 ms at 115.2 kbps
$\mathrm{Ltm}=13+2 \times \mathrm{n}$ ($\mathrm{n}=$ number of stations being added)
(3) Tso (master station scan time)

This should be confirmed using the programming tool.
(4) TIk (link addition processing time) -- If no stations are being added, Tlk $=0$.

TIk = TIc (link addition command sending time) + Twt (addition waiting time) + TIs (sending time for command to stop transmission if link error occurs) + Tso (master station scan time) TIC $=10 \times$ Ttx (sending time per byte)

Ttx $=1 /$ transmission speed $\times 1000 \times 11 \mathrm{~ms}---$ approx. 0.096 ms at 115.2 kbps
Twt $=$ Initial value 400 ms (can be changed using SYS2 system register instruction)
Tls $=7 \times$ Ttx (sending time per byte)
Ttx $=1 /$ transmission speed $\times 1000 \times 11 \mathrm{~ms}--$ approx. 0.096 ms at 115.2 kbps
Tso = Master station scan time

Calculation example 1

When there are no stations that have not been added to a 16 -unit link, the largest station number is 16, relays and registers have been evenly allocated, and the scan time for each PLC is 1 ms
$\mathrm{Ttx}=0.096$ Each $\mathrm{Pcm}=23+(4+8) \times 4=71 \quad \mathrm{Tpc}=\mathrm{Ttx} \times \mathrm{Pcm}=0.096 \times 71 \fallingdotseq 6.82 \mathrm{~ms}$
Each Ts $=1+6.82=7.82 \mathrm{~ms} \quad \mathrm{~T}$ It $=0.096 \times(13+2 \times 16)=4.32 \mathrm{~ms}$
Given the above conditions, the maximum value for the transmission time (T) of one cycle will be:
T max. $=7.82 \times 16+4.32+1=130.44 \mathrm{~ms}$

Calculation example 2

When there are no stations that have not been added to a 16 -unit link, the largest station number is 16 , relays and registers have been evenly allocated, and the scan time for each PLC is 5 ms
$\mathrm{Ttx}=0.096$ Each $\mathrm{Pcm}=23+(4+8) \times 4=71 \mathrm{Tpc}=\mathrm{Ttx} \times \mathrm{Pcm}=0.096 \times 71 \fallingdotseq 6.82 \mathrm{~ms}$
Each Ts $=5+6.82=11.82 \mathrm{~ms} \quad \mathrm{~T} \mid \mathrm{t}=0.096 \times(13+2 \times 16)=4.32 \mathrm{~ms}$
Given the above conditions, the maximum value for the transmission time (T) of one cycle will be:
T max. $=11.82 \times 16+4.32+5=198.44 \mathrm{~ms}$

Calculation example 3

When there is one station that has not been added to a 16 -unit link, the largest station number is 16 , relays and registers have been allocated evenly, and the scan time for each PLC is 5 ms
$\mathrm{Ttx}=0.096$ Each Ts $=5+6.82=11.82 \mathrm{~ms} \quad \mathrm{Tlt}=0.096 \times(13+2 \times 15) \fallingdotseq 4.31 \mathrm{~ms}$
Tlk $=0.96+400+0.67+5 \fallingdotseq 407 \mathrm{~ms}$
Note: The default value for the addition waiting time is 400 ms .
Given the above conditions, the maximum value for the transmission time $(\mathrm{T}$) of one cycle will be:
T max. $=11.82 \times 15+4.13+5+407=593.43 \mathrm{~ms}$

Calculation example 4

When there are no stations that have not been added to an 8 -unit link, the largest station number is 9 , relays and registers have been evenly allocated, and the scan time for each PLC is 5 ms
$\mathrm{Ttx}=0.096$ Each $\mathrm{Pcm}=23+(8+16) \times 4=119 \mathrm{Tpc}=\mathrm{Ttx} \times \mathrm{Pcm}=0.096 \times 119 \fallingdotseq 11.43 \mathrm{~ms}$ Each Ts $=5+11.43=16.43 \mathrm{~ms} \quad \mathrm{Tlt}=0.096 \times(13+2 \times 8) \fallingdotseq 2.79 \mathrm{~ms}$
Given the above conditions, the maximum value for the transmission time (T) of one cycle will be:
T max. $=16.43 \times 8+2.79+5=139.23 \mathrm{~ms}$

Calculation example 5

When there are no stations that have not been added to a 2 - unit link, the largest station number is 2 , relays and registers have been evenly allocated, and the scan time for each PLC is 5 ms
$\mathrm{Ttx}=0.096$ Each $\mathrm{Pcm}=23+(32+64) \times 4=407 \quad \mathrm{Tpc}=\mathrm{Ttx} \times \mathrm{Pcm}=0.096 \times 407 \fallingdotseq 39.072 \mathrm{~ms}$
Each Ts $=5+39.072=44.072 \mathrm{~ms}$ TIt $=0.096 \times(13+2 \times 2) \fallingdotseq 1.632 \mathrm{~ms}$
Given the above conditions, the maximum value for the transmission time (T) of one cycle will be:
T max. $=44.072 \times 2+1.632+5=94.776 \mathrm{~ms}$

Calculation example 6

When there are no stations that have not been added to a 2 - unit link, the largest station number is 2,32 relays and register 2 words have been evenly allocated, and the scan time for each PLC is 1 ms

Ttx $=0.096$ Each $\mathrm{Pcm}=23+(1+1) \times 4=31 \quad \mathrm{Tpc}=\mathrm{Ttx} \times \mathrm{Pcm}=0.096 \times 31 \fallingdotseq 2.976 \mathrm{~ms}$
Each Ts $=1+2.976=3.976 \mathrm{~ms} \quad \mathrm{Tlt}=0.096 \times(13+2 \times 2) \fallingdotseq 1.632 \mathrm{~ms}$
Given the above conditions, the maximum value for the transmission time (T) of one cycle will be:
T max. $=3.976 \times 2+1.632+1=10.584 \mathbf{m s}$

- In the description, "stations that have not been added" refers to stations that are not connected between the No. 1 station and the largest station number, or stations that are connected but for which the power supply has not been turned on.
- When calculation examples 2 and 3 are compared, the transmission cycle time is longer if there is one station that has not been added to the link, and as a result the PLC link response time is longer.
- The SYS1 instruction can be used to minimize the transmission cycle time even if there is a station or stations that have not been added to the link.

10.5.2 Shortening the Transmission Cycle Time When There are Stations That Have not been Added to the Link

If there are stations that have not been added to the link, the TIk time (link addition processing time) will be longer, which causes the transmission cycle time to be longer.

$$
\mathrm{T} \text { max. }=\mathrm{Ts} 1+\mathrm{Ts} 2+---+\mathrm{Tsn}+\mathrm{Tlt}+\mathrm{Tso}+\underline{\mathrm{Tlk}}
$$

TIk = TIc (link addition command sending time) + Twt (addition waiting time) + Tls (link error stop command sending time) + Tso (master station scan time)

If the SYS1 instruction is used to shorten Twt in the above formula, the increase in the transmission cycle time can be minimized.
Example of setting the SYS1 instruction
SYS1 MPCLK1T0, 100
Function description: Changes the waiting time for a link to be added to the PLC link (default value $=400 \mathrm{~ms}$)
In the above, the waiting time is set to 100 ms .
Key words: Setting for the No. 1 key word: PCLK1T0
Allowable setting range for the No. 2 key word: 10 to 400 (10 ms to 400 ms)

Notes

Precautions concerning settings:

- The above instruction should be set so that it is executed at the beginning of the program, at the rise of R9014, and the same value should be set for all of the PLCs being linked.
- Executing the above instruction does not change any of the system registers.
- The SYS1 instruction should be set to a value at least twice that of the maximum scan time for any of the PLCs connected to the link.
- If a short value has been set, there may be PLCs that cannot be added to the link even if the power supply to that PLC is on. However, the shortest time that can be set is 10 ms .
- If there are any stations that have not been added to the link, the setting should not be changed as long as a longer link transmission cycle time does not cause any particular problems.

10.5.3 Error Detection Time for Transmission Assurance Relays

If the power supply for the PLC of any given station fails or is turned off, it takes (as a default value) 6.4 seconds for the transmission assurance relay of that PLC to be turned off at the other stations. This time period can be shortened using the SYS1 instruction.

Example of SYS1 instruction setting

SYS1 MPCLK1T1, 100
Function description: This changes the time that the PLC link transmission assurance relay is off (default value $=6400 \mathrm{~ms}$).
The above example shows the time being set to 100 ms .
Key words: Specification of No. 1 key word: PCLK1T1
Allowable setting range for No. 2 key word: 100 to 6400 (100 ms to 6400 ms)

Notes

Precautions concerning settings

- The above instruction should be set up at the beginning of the program, so that it is executed at the rise of R9014, and the same value should be set for all of the PLCs in the link.
- Executing the above instruction does not change any of the system registers.
- The SYS1 instruction should be set to a value at least twice that of the maximum transmission cycle time when all of the PLCs are connected to the link.
- If a short value has been set, there is a possibility of the transmission assurance relay malfunctioning. However, the shortest time that can be set is 100 ms .
- The setting should not be changed as long as a longer transmission assurance relay detection time does not cause any particular problems.

Chapter 11

Other Functions

11.1 Analog P otentiometer 11-3
11.2 Clock/Calendar Function 11-4

11.1 Analog Potentiometer

This section explains about the analog potentiometer.

11.1.1 Overview of Analog Potentiometer

The FP Σ is equipped with two analog potentiometers as a standard feature. Turning the potentiometers changes the values of the special data registers DT90040 and DT90041 within a range of K0 to K1000.
Using this function makes it possible to change the internal set values in the PLC without using the programming tool, so this can be used, for example, with analog clocks, to change the set value externally by turning the potentiometer.

Analog potentiometer
V0 (potentiometer 0). Changes the value of DT90040 within a range of K0 to K1000.
V1 (potentiometer 1). Changes the value of DT90041 within a range of K0 to K1000.

Figure 223: FP Σ Analog potentiometer
Applicable special data register

Symbol	Potentiometer No.	Special data register	Range of change
V0	Volume 0	DT90040	K0 to K1000
V1	Volume 1	DT90041	

11.1.2 Example Showing How the Analog Potentiometers are Used

The FP Σ is provided with special data registers, in which the values in the registers change in response to the analog potentiometers being moved. If the values of these registers are sent to the clock setting value area, a clock can be created that allows the time to be set using the potentiometer.

Writing example of the clock setting value

The value of the special data register (DT90040) that corresponds to the analog potentiometer V0 is sent to the setting value area (SV0) of TMX0 to set the time for the clock.

Figure 224: Program example of analog potentiometer

11.2 Clock/Calendar Function

This section explains about the clock/calendar function.

11.2.1 Area for Clock/Calendar Function

If a backup battery is installed in the FP Σ, the clock/calendar function can be used. With the clock/calendar function, data indicating the hour, minute, second, day, year and other information stored in the special data registers DT90053 to DT90057 can be read using the transmission instruction and used in sequence programs.

Special data register No.	Upper byte	Lower byte	Reading	Writing
DT90053	Hour data H00 to H23	Minute data H00 to H59	Available	Not available
DT90054	Minute data H00 to H59	Second data H00 to H59	Available	Available
DT90055	Day data H01 to H31	Hour data H00 to H23	Available	Available
DT90056	Year data H00 to H99	Month data H01 to H12	Available	Available
DT90057	-	Day- of-the-weekdata H00 to H06	Available	Available

11.2.2 Setting of Clock/Calendar Function

There are two ways to set the clock/calendar function, as described below.

Setting using FPWIN GR

1. Press the [CTRL] and [F2] keys at the same time, to switch to the [Online] screen.
2. Select "S et PLC Date and Time" under "Tool" on the menu bar.

Set PLC Date and Time dialog box

The above steps display the "Set PLC Date and Time dialog box" shown at the left. Input the date and time, and click on the " \underline{O} " button.

Figure 225: FPWIN GR - Set PLC Date and Time dialog box

Setting and changing using program

1. The values written to the special data registers DT90054 to DT90057, which are allocated as the clock/calendar setting area, are sent.
2. A value of H 8000 is written to DT90058.

Note

The value can be sent using the differential instruction "DF", or by changing H 8000 to $\mathbf{H 0 0 0 0}$.

Example showing the date and time being written

Set the time to 12:00:00 on the 5th day when the X0 turns on.

Figure 226: FP Σ Sample program of clock/calendar function

11.2.3 Precautions Concerning Backup of Clock/Calendar Data

The clock/calendar values are backed up using a battery. Please be aware that these values cannot be used unless a battery has been installed in the FPE.
No values have been set in the default settings, so the programming tool or another means must be used to specify the values.

11.2.4 Example Showing the Clock/Calendar being Used

Sample program for Fixed schedule and automatic start

In the example shown here, the clock/calendar function is used to output the (Y0) signal for one second, at 8:30 a.m. every day.
Here, the "Hour/minute" data stored in the special data register DT90053 is used to output the signal at the appointed time.

Figure 227: FP Σ Sample program of clock/calendar function
The hour data is stored in the upper 8 bits of DT90053 and the minute data in the lower 8 bits, in the BCD format. This hour and minute data is compared with the appointed time (BCD), and the R900B (=flag) special internal relay is used to detect whether or not it matches the appointed time.

Chapter 12

Self-Diagnostic and Troubleshooting

12.1 Self- Diagnostic Function 12-3
12.2 Troubleshooting 12-5

12.1 Self-Diagnostic Function

This section explains about the self-diagnostic function of FP Σ.

12.1.1 LED Display for Status C ondition

Status indicator LEDs on control unit

	LED status			Description	Operation status
	RUN	PROG.	ERROR/ ALARM		
Normal condition	Light (on)	Off	Off	Normal operation	Operation
	Off	Light (on)	Off	PROG. mode	Stop
	Flashes	Flashes	Off	Forcing on/off in Run mode	Operation
Abnormal condition	Off	Off	Flashes	When a self-diagnostic error occurs	Operation
	Off	Light (on)	Flashes	When a self-diagnostic error occurs	Stop
	Varies	Varies	Light (on)	System watchdog timer has been activated	Stop

The control unit has a self-diagnostic function which identifies errors and stops operation if necessary.
When an error occurs, the status of the status indicator LEDs on the control unit vary, as shown in the table above.

Figure 228: FP Σ Status indicator LED

12.1.2 Operation on Error

Normally, when an error occurs, the operation stops.
The user may select whether operation is to be continued or stopped when a duplicated output error or operation error occurs, by setting the system registers. You can set the error which operation is to be continued or stopped using the programming tool software as shown below.

"PLC Configuration" setting menu on programming tool software (FPWIN GR)

To specify the steps to be taken by the FPWIN GR if a PLC error occurs, select "PLC Configuration" under "Option" on the menu bar, and click on the "Action on Error" tab. The screen shown below is displayed.

Figure 229: FPWIN GR PLC Configuration setting screen

Example 1: Allowing duplicated output
 Turn off the check box for No. 20. When operation is resumed, it will not be handled as an error.
 Example 2: When continuing operation even a calculation error has occured Turn off the check box for No. 26. When operation is resumed, it will be continued, but will be handled as an error.

12.2 Troubleshooting

This section explains about what to do if an error occurs.

12.2.1 If the ERROR/ALARM LED Flashes

Condition: The self-diagnostic error occurs.

Procedure 1

Check the error contents (error code) using the programming tool "FPWIN GR".

Using FPWIN GR

With the FPWIN GR Ver. 2, if a PLC error occurs during programming or debugging, the following status display dialog box is displayed automatically. Check the contents of the self-diagnosed error.

Status display dialog box

If the error is an operation error, the error address can be confirmed in this dialog box. Click on the "Clear Error" button to clear the error.

Tip
To display the status display dialog box, select "Status Display" under "Online" on the menu bar.

Procedure 2:

For error code is 1 to 9

Condition: There is a syntax error in the program. Operation 1

Change to PROG. mode and clear the error.

Operation 2

Execute a total-check function using FPWIN GR to determine the location of the syntax error.

For error code is $\mathbf{2 0}$ or higher

Condition: A self-diagnostic error other than a syntax error has occurred. Operation

Use the programming tool "FPWIN GR" in PROG. mode to clear the error.

Using FPWIN GR

Click on the "Clear Error" button in the "Status display dialog box". Error code 43 and higher can be cleared.

In the PROG. mode, the power supply can be turned off and then on again to clear the error, but all of the contents of the operation memory except hold type data are cleared.

An error can also be cleared by executing a self-diagnostic error set instruction $\mathbf{F} 148$ (ERR).

If the mode selector switch has been set to the "RUN" position, the error is cleared and at the same time operation is enabled. If the problem that caused the error has not been eliminated, it may look in some cases as though the error has not been cleared.

Tip
When an operation error (error code 45) occurs, the address at which the error occurred is stored in special data registers DT90017 and DT90018. If this happens, click on the "Operation Err" button in the "Status display dialog box" and confirm the address at which the error occurred before cancelling the error.

12.2.2 If the ERROR/ALARM LED Lights

Condition: The system watchdog timer has been activated and the operation of PLC has been stopped.

Procedure 1

Set the mode selector of PLC from RUN to PROG. mode and turn the power off and then on.

- If the ERROR/ALARM LED is turned on again, there is probably an abnormality in the FP Σ control unit. Please contact your dealer.
- If the ERROR/ALARM LED is flashed, go to page 12-5.

Procedure 2

Set the mode selector from PROG. to RUN mode.

- If the ERROR/ALARM LED is turned on, the program execution time is too long. Check the program, referring the following:
Check if instructions such as "J ump" or "LOOP" are programmed in such a way that a scan can never finish.

Check that interrupt instructions are executed in succession.

12.2.3 If None of the LEDs Light

Procedure 1

Check wiring of power supply.

Procedure 2

Check if the power supplied to the FP Σ control unit is in the range of the rating.

- Be sure to check the fluctuation in the power supply.

Procedure 3

Disconnect the power supply wiring to the other devices if the power supplied to the FP Σ control unit is shared with them.

- If the LED on the control unit turn on at this moment, increase the capacity of the power supply or prepare another power supply for other devices.

12.2.4 If Outputting does not Occur as Desired

Proceed from the check of the output side to the check of the input side.

Check of output condition 1: Output indicator LE Ds are on

Procedure 1

Check the wiring of the loads.

Procedure 2

Check if the power is properly supplied to the loads.

- If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.
- If the power is not supplied to the load, there is probably an abnormality in the output section. Please contact your dealer.

Check of output condition 2: Output indicator LEDs are off
 Procedure 1

Monitor the output condition using a programming tool.

- If the output monitored is turned on, there is probably a duplicated output error.

Procedure 2

Forcing on the output using forcing input/output function.

- If the output indicator LED is turned on, go to input condition check.
- If the output indicator LED remains off, there is probably an abnormality in the output unit. Please contact your dealer.

Check of input condition 3: Input indicator LEDs are off

Procedure 1

Check the wiring of the input devices.

Procedure 2

Check that the power is properly supplied to the input terminals.

- If the power is properly supplied to the input terminal, there is probably an abnormality in the input unit. Please contact your dealer.
- If the power is not supplied to the input terminal, there is probably an abnormality in the input device or input power supply. Check the input device and input power supply.

Check of input condition 4: Input indicator LEDs are on
 Procedure

Monitor the input condition using a programming tool.

- If the input monitored is off, there is probably an abnormality with the input unit. P lease contact your dealer.
- If the input monitored is on, check the leakage current at the input devices (e.g., two-wire type sensor) and check the program again, referring the following:
Check for the duplicated use of output and for the output using the high-level instruction.
Check the program flow when a control instruction such as Master control relay or Jump is used.

12.2.5 If a Protect Error Message Appears

When a Password Function is Used

Procedure

Enter a password in the "Set PLC Password" menu in FPWIN GR and turn on the "Access" radio button.

Using FPWIN GR

1. Select "S et PLC Password" under "Tool" on the menu bar.
2. The PLC password setting dialog box shown below is displayed. Turn on the radio button next to "Access", enter a password, and click on the "Settings" button.

Set PLC Password dialog box

Figure 231: FPWIN GR - Set PLC Password dialog box

12.2.6 If the Program Mode does not Change to RUN

Condition: A syntax error or a self-diagnosed error that caused operation to stop has occurred.

Procedure 1

Check to see if the ERROR/ALARM LED is flashing.
If the ERROR/ALARM LED is flashing, check the contents noted on page 12-5.

Procedure 2

Execute a total-check function to determine the location of the syntax error.

12.2.7 If a Transmission Error has Occurred

Procedure 1

Check to make sure the transmission cables have been securely connected between the two $(+)$ terminals and the two $(-)$ terminals of the units, and that the final unit has been correctly connected.

Procedure 2

Check to see if the transmission cables are within the specifications range, referring to page 7-11.

At this point, make sure all of the cables in the link are of the same type, and that multiple types of cables are not being used.
Do not designate any unit other than those at both ends of the network as a terminal station.

Procedure 3

Check that link areas do not overlap.

Chapter 13

Specifications

13.1 Table of Specifications 13-3
13.2 I/O No. Allocation 13-10
13.3 Relays, Memory Areas and Constants 13-12
13.4 Table of System Registers 13-14
13.5 Table of Special Internal Relays 13-21
13.6 Table of S pecial Data Registers 13-28
13.7 Table of E rror Cords 13-42
13.8 Table of Instructions 13-44
13.9 MEWTOCOL-COM Communication Commands 13-66
13.10 Hexadecimal/Binary/BCD 13-67
13.11 ASCII Codes 13-68
13.12 Dimensions 13-69

13.1 Table of Specifications

This section contains the general and performance specifications for the FP .

13.1.1 General Specifications

Item		Description	
Rated operating voltage		24 V DC	
Operating voltage range		21.6 to 26.4 V DC	
Allowed momentary power off time	C32	4 ms at $21.6 \mathrm{~V}, 7 \mathrm{~ms}$ at $24 \mathrm{~V}, 10 \mathrm{~ms}$ at 26.4 V	
	C24	3 ms at $21.6 \mathrm{~V}, 5 \mathrm{~ms}$ at $24 \mathrm{~V}, 8 \mathrm{~ms}$ at 26.4 V	
Ambient temperature		0 to $+55^{\circ} \mathrm{C} / 32$ to $+131{ }^{\circ} \mathrm{F}$	
Storage temperature		-20 to $+70{ }^{\circ} \mathrm{C} /-4$ to $+158^{\circ} \mathrm{F}$	
Ambient humidity		30 to 85 \% RH (non-condensing)	
Storage humidity		30 to 85 \% RH (non-condensing)	
Breakdown voltage	C32	Between input/output terminals and power supply terminal/ function earth	500 VAC for 1 minute
		Between input terminal and output terminal	
	C24	Between input terminals (X0 to X7)/input terminals (X8 to XF) and power supply terminal/function earth	500 VAC for 1 minute
		Between output terminals and power supply terminal/function earth	1500 VAC for 1 minute
		Between input terminals (X0 to X7) and input terminals (X8 to XF)	500 VAC for 1 minute
		Between input terminals (X0 to X 7)/input terminals (X 8 to XF) and output terminals	1500 VAC for 1 minute
Insulation resistance	C32	Between input/output terminals and power supply terminal/ function earth	Min. 100Ω (measured with a 500 V DC megger)
		Between input terminal and output terminal	
	C24	Between input terminals (X0 to X7)/input terminals (X8 to XF) and power supply terminal/function earth	
		Between output terminals and power supply terminal/function earth	
		Between input terminals (X0 to X7) and input terminals (X8 to XF)	
		Between input terminals (X0 to X 7)/input terminals (X 8 to XF) and output terminals	
Vibration resistance		10 to $55 \mathrm{~Hz}, 1$ cycle/min: double amplitude of $0.75 \mathrm{~mm} / 0.030 \mathrm{in}$., 10 min on 3 axes	
Shock resistance		Shock of $98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on 3 axes	
Noise immunity		$1,000 \mathrm{Vp}-\mathrm{p}$ with pulse widths 50 ns and $1 \mu \mathrm{~s}$ (based on in-house measurements)	
Operating condition		Free from corrosive gases and excessive dust	

Weight

Unit type	Part No.	Weight
FP \sum control unit	FPG-C32T/C32T2	Approx. $120 \mathrm{~g} / 4.24 \mathrm{oz}$
	FPG - C24R2	Approx. $140 \mathrm{~g} / 4.94 \mathrm{oz}$
FPE expansion unit	FPG-XY64D2T	Approx. $100 \mathrm{~g} / 3.53 \mathrm{oz}$
FP0 expansion unit	FPG -E8X	Approx. $65 \mathrm{~g} / 2.29 \mathrm{oz}$
	FPG -E8R/E8YR	Approx. $90 \mathrm{~g} / 3.17 \mathrm{oz}$
	FPG -E8YT/E8YP	Approx. $65 \mathrm{~g} / 2.29 \mathrm{oz}$
	FPG-E16R	Approx. $105 \mathrm{~g} / 3.70$ oz
	FPG -E16T/E 16P/E 16X/E 16YT/E 16YP	Approx. $70 \mathrm{~g} / 2.47 \mathrm{oz}$
	FPG-E32T/E32P	Approx. $85 \mathrm{~g} / 3.00$ oz

Unit's current consumption table

Type of unit		Control unit current consumption	Expansion unit current consumption	Input circuit current consumption	Output circuit current consumption
		This is the current consumed from the control unit power supply connector. If expansion units or intelligent units are added, the current is increased by the value indicated below.	This is the current consumed from the expansion unit power supplyconnector. If a unit is not listed below, it means that it has no power supply connector.	This is the current consumed by the input circuits of the various units. This value indicates the current that flows into the input circuit. "n" indicates the number of points that are on.	This is the current consumed by the output circuits of the various units. This value indicates the current used to drive the output circuits. "n" indicates the number of points that are on. This value does not include the load current value.
FPE control unit	FPG-C32T	90 mA or less	-	77.2 mA or less	70 mA or less
	FPG-C32T2	90 mA or less	-	77.2 mA or less	70 mA or less
	FPG-C24R2	160 mA or less	-	77.2 mA or less	-
FP Σ expansion unit	FPG-XY64D2T	35 mA or less	-	$3.5 \times \mathrm{nmA}$ or less	15 mA or less
FP0 expansion unit	FP0-E8X	10 mA or less	-	$4.3 \times \mathrm{n} \mathrm{mA}$ or less	-
	FP0-E8R	15 mA or less	50 mA or less	$4.3 \times \mathrm{nmA}$ or less	-
	FP0-E8YR	10 mA or less	100 mA or less	-	-
	FP0-E8YT	15 mA or less	-	-	$3 \times \mathrm{nmA}$ or less
	FP0-E16X	20 mA or less	-	$4.3 \times \mathrm{n} \mathrm{mA}$ or less	-
	FP0-E16R	20 mA or less	100 mA or less	$4.3 \times \mathrm{n} \mathrm{mA}$ or less	-
	FP0-E16T	25 mA or less	-	$4.3 \times \mathrm{nmA}$ or less	$3 \times \mathrm{nmA}$ or less
	FP0-E16YT	25 mA or less	-	-	$3 \times \mathrm{nmA}$ or less
	FP0-E32T	40 mA or less	-	$4.3 \times \mathrm{n} \mathrm{mA}$ or less	$3 \times \mathrm{nmA}$ or less
FP0 intelligent unit	FP0-A21	20 mA or less	100 mA or less	-	-
	FP0-A80	20 mA or less	60 mA or less	-	-
	FP0-IOL	30 mA or less	40 mA or less	-	-
Communication cassette	$\begin{aligned} & \text { FPG-COM1 } \\ & \text { FPG-COM2 } \end{aligned}$	20 mA or less	-	-	-
	FPG-COM3	25 mA or less	-	-	-

13.1.2 Performance Specifications

Item				Descriptions		
				FPG-C32T	FPG-C32T2	FPG - C24R2
Number of controllable I/O points		Control unit		32 points (DC input: 16, Transistor output: 16)	32 points (DC input: 16, Transistor output: 16)	24 points (DC input: 16, Relay output: 8)
		When using FP0 expansion units		Max. 128 points (up to 3 units)	Max. 128 points (up to 3 units)	Max. 120 points (up to 3 units) *When using transistor output type expansion units
		When using FP Σ expansion units		Not possible	Max. 288 points (up to 4 units)	Max. 280 points (up to 4 units) *When using transistor output type expansion units
		When using FPO and FP Σ expansion units		-	Max. 384 points (up to FPO 3 units and FP $\Sigma 4$ units)	Max. 376 points (up to FPO 3 units and FPE 4 units) *When using transistor output type expansion units
Programming method/Control method				Relay symbol/Cyclic operation		
Program memory				Built-in Flash ROM (without backup battery) (By using exclusive instructions it is possible to write and read data.)		
Program capacity				12,000 steps		
Number of instruction			Basic	85		
			High-level	220		
Operation speed				$0.4 \mu \mathrm{~s} / \mathrm{step}$ (by basic instruction)		
Operation memory points	Relay	External input relay (X)		$\begin{aligned} & 512 \text { points } \\ & \text { (* Note 7) } \end{aligned}$	$\begin{array}{\|l} \hline \text { 1,184 points } \\ \text { (* Note } 7) \end{array}$	$\begin{aligned} & \text { 1,184 points } \\ & (* \text { Note } 7) \end{aligned}$
		External output relay (Y)		$\begin{aligned} & 512 \text { points } \\ & \text { (* Note 7) } \end{aligned}$	1,184 points (* Note 7)	$\begin{aligned} & \text { 1,184 points } \\ & \text { (* Note } 7) \end{aligned}$
		Internal relay (R)		1,568 points (R0 to R 97F) (* Note 1)		
		Timer/Counter (T/C)		1,024 points (* Note 1 and 2) (for initial setting, Timer: 1,008 points (T0 to T1007), Counter: 16 points (C1008 to C1023) Timer: Can count up to (in units of $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$, or 1 s) $\times 32767$. Counter: Can count up to 1 to 32767.		
		Link relays (L)		1,024 points (* Note 1)		
	Memory area	Data register (DT)		32,765 words (DT0 to DT32764) (* Note 1)		
		Link data register (LD)		128 words (* Note 1)		
		Index register (I)		14 words (I0 to ID)		
Differential points				Unlimited of points		
Master control relay points (MCR)				256 points		
Number of labels (J P and LOOP)				256 labels		
Number of step ladders				1,000 stages		

next page

Item	Descriptions
Number of subroutines	100 subroutines
Pulse catch input	8 points (X0 to X7)
Number of interrupt programs	9 programs (external input 8 points "X0 to X7", periodical inter- rupt 1 point "0.5 ms to 30s")
Self-diagnosis function	Such as watchdog timer, program syntax check
Clock/calendar function	Available (year, month, day, hour, minute, second and day of week) (However, this can only be used when a battery has been installed.) (* Note 3)
Potentiometer (Volume) input	2 points, Resolution: 10 bits (K0 to K1000)
Battery life	220 days or more (actual usage value: approx, 840 days (25 (Periodic replacement interval: 1 year) (value applies when no power is supplied at all)
Comment storage	All kinds of comments, including I/O comments, remarks, and block comments, can be stored. (Without backup battery)
Link function	Computer link (1:1, 1:N) (* Note 4) General- purpose communication (1:1, 1:N) (* Note 4) (* Note 5) PLC link (* Note 6)
Other functions	Program edition during RUN, constant scan, forced on/off, pass- word, floating- point operation, and PID processing

Notes

1) If no battery is used, only the fixed area is backed up (counters 16 points: C1008 to C1023, internal relays 128 points: R900 to R97F, data registers 55 words: DT32710 to DT32764). When the optional battery is used, all area can be backed up. Areas to be held and not held can be specified using the system registers.
2) The number of points can be increased by using an auxiliary timer.
3) Precision of calender timer:

- At 0_C/32_F, less than 119 second error per month.
- At 25_C/77_F, less than 51 seconds error per month.
- At 55_C/131_F, less than 148 seconds error per month.

4) An optional communication cassette (RS232C type) is required in order to use 1:1 communication.
5) An optional communication cassette (RS485 type) is required in order to use $1: \mathbf{N}$ communication.
6) An optional communication cassette (RS485 type) is required. If a communication cassette is installed and communication is being carried out, re-send processing is recommended.
7) The number of points actually available for use is determined by the hardware configuration.

High -speed counter, pulse output and PWM output specifications

Item		Descriptions	
High speed counter	Input point number	When using single-phase: Four channels maximum	When using 2-phase: Two channels maximum
	Maximum counting speed	When using single-phase: for 1 channel: 50 kHz max. (x 1 ch) for 2 channels: 30 kHz max. (x 2 ch) for 3 or 4 channels: 20 kHz max. ($\times 3$ to 4 ch)	When using 2-phase: for 1 channel: 20 kHz max. (x1 ch) for 2 channels: 15 kHz max. (x2 ch)
	Input mode	When using single-phase: Addition input, Subtraction input	When using 2-phase: Two-phase input, One input, Direction distinction input
	Input contact used (* Note1)	When using single-phase: X0: count input (ch0) X1: count input (ch1) X2: reset input (ch0, ch1) X3: count input (ch2) X4: count input (ch3) X5: reset input (ch2, ch3)	When using 2-phase: X0, X1: count input (ch0) X2: reset input (ch0) X3, X4: count input (ch2) X5: reset input (ch2)
Pulse output	Output point number	Two independent points (simultaneous output possible)	
	Outputmode	CW and CCW mode, Pulse and Sign mode	
	Maximum output frequency	$\begin{aligned} & \text { When using } 1 \text { channel: } 100 \mathrm{kHz} \text { max. (x1 ch) } \\ & \text { When using } 2 \text { channels: } 60 \mathrm{kHz} \text { max. (x2 ch) }\left(\begin{array}{l} \text { When using linear interpolation function: } \\ \text { Max. } 100 \mathrm{kHz} \\ \text { When using circular interpolation function: } \\ \text { Max. } 20 \mathrm{kHz} \end{array}\right) \end{aligned}$	
	High - speed counter used (* Note 2)	Two-phase ch0 or ch2	
	Input/Output contact used (* Note 1)	X2 or X5: Home input YO or Y 3: CW output or Pulse output Y1 or Y4: CCW output or Sigh output Y2 or Y5: Deviation counter reset output	
PWM output	Output point number	Two points (Y0, Y3)	
	Output frequency	1.5 to 12.5 k Hz (at resolution of 1000), 15.6 k to 41.7 k Hz (at resolution of 100)	
	Output duty	0.0 to 99.9\% (at resolution of 1000), 1 to 99\% (at resolution of 100)	
	High-speed counter used (* Note 2)	Two-phase ch0 or ch 2	
	$\begin{array}{\|l\|} \hline \text { Output } \\ \text { contact used } \\ \text { (* Note 1) } \\ \hline \end{array}$	Y0 or Y3	

Notes

1) The contacts noted above cannot be allocated for more than one function. Also, contacts that are not assigned to the various functions can be used as general inputs/outputs. Inputs X0 to X5 are pulse catch inputs, and can also be used for interrupt input.
2) If using pulse output or PWM output, one channel of the two -phase high-speed counter is used for each output point, in each case. If only one pulse output point is being used, either one point of the two - phase high-speed counter or three points of the single-phase high-speed counter may be used.

Serial communication specifications (1:1 communication) (* Note 1)

Item	Description
Communication method	Half duplex transmission
Synchronous method	Start stop synchronous system
Transmission line	RS232C
Transmission distance	$15 \mathrm{~m} / 49.21 \mathrm{ft}$.
Transmission speed (Baud rate)	2,400 bits/s to 115.2 k bits/s (* Note 2)
Transmission code	ASClI
Transmission format	Stop bit: 1 bit/2 bits, Parity: none/even/odd, Data length: 7 bits/8 bits (* Note 2)
Interface	Conforming to RS232C (connected via the terminal block)

Notes

1) In order to use the serial communication function (1:1 communication), RS232C type communication cassette is required.
2) The transmission speed (baud rate) and transmission format are specified using the system registers.

Serial communication specifications (1:N communication) (* Note 1)

Item	Description
Communication method	Two-wire, half duplex transmission
Synchronous method	Start stop synchronous system
Transmission line	Twisted-pair cable or VCTF
Transmission distance (Total distance)	Maximum 1,200 m/3,937 ft. (* Notes 4 and 5)
Transmission speed (Baud rate)	2,400 bits/s to $115.2 \mathrm{k} \mathrm{bits/s}$ (19,200 bits/s when a C - NET adapter is connected) (* Notes 2, 4 and 5)
Transmission code	ASClI
Transmission format	Stop bit: 1 bit/2 bits, Parity: none/even/odd, Data length: 7 bits/8 bits (* Notes 2)
Number of units (stations)	Maximum 99 units (stations) (32 units (stations) max. when a C - NET adapter is connected) (* Notes 3, 4 and 5)
Interface	Conforming to RS485 (connected via the terminal block)

Notes

1) In order to use the serial communication function (1:N communication), RS485 type communication cassette is required.
2) The transmission speed (baud rate) and transmission format are specified using the system registers.
3) Unit (Station) numbers are specified using the system registers. Up to 31 units (stations) can be set, using the switches on the control unit.
4) When connecting a commercially available device that has an RS485 interface, please confirm operation using the actual device. In some cases, the number of units (stations), transmission distance, and transmission speed (baud rate) vary depending on the connected device.
5) The values for the transmission distance, transmission speed (baud rate), and number of units (stations) should be within the values noted in the graph below.

When using a transmission speed of $2,400 \mathrm{bits} / \mathrm{s}$ to 38.4 k bits $/ \mathrm{s}$, you can set up to a maximum of 99 units (stations) and a maximum transmission distance of $1,200 \mathrm{~m}$.

PLC link function specification (* Note 1)

Item	Description
Communication method	Token bus
Transmission method	Floating master method
Transmission line	Twisted - pair cable or VCTF
Transmission distance (Total distance)	$1,200 \mathrm{~m} / 3,937 \mathrm{ft}$.
Transmission speed (Baud rate)	115.2 k bits/s
Number of units (stations)	Maximum 16 units (* Note 2)
PLC link capacity	Link relay: 1,024 points, Link register: 128 words
Interface	Conforming to RS485 (connected via the terminal block)

Notes

1) RS485 type communication cassette is required in order to use the PLC link function.
2) Unit (Station) numbers are specified using the switches on the control unit or the system registers.

13.2 I/O No. Allocation

FP Σ C ontrol unit

The allocation of the FP Σ control unit is fixed.

Control unit		I/O No.
FPG -C32T FPG -C32T2	Input: 16 points	X0 to XF
	Output: 16 points	Y0 to YF
FPG-C24R2	Input: 16 points	X0 to XF
	Output: 8 points	Y0 to Y7

I/O No. of expansion unit

I/O numbers do not need to be set as I/O allocation is performed automatically by the PLC when an expansion I/O unit is added.The I/O allocation of expansion unit is determined by the installation location.

FP Σ expansion unit (for left side expansion)	First expansion	Second expansion	Third expansion	Fourth expansion	
FPG -XY64D2T	Input: 32 points	X 100 to X 11 F	X 180 to X 19 F	X 260 to X 27 F	X 340 to X 35 F
	Output: 32 points	Y 100 to Y 11 F	Y 180 to Y 19 F	Y 260 to Y 27 F	Y 340 to Y 35 F

FPO expansion unit (for right side expansion)		First expansion	Second expansion	Third expansion
FP0-E8X	Input: 8 points	X20 to X27	X40 to X47	X60 to X67
FP0-E8R	Input: 4 points	X20 to X23	X40 to X43	X60 to X63
	Output: 4 points	Y20 to Y23	Y40 to Y43	Y60 to Y63
FP0-E8YT/E8YR/E8YP	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67
FP0-E16X	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F
FP0-E16R/E16T/E 16P	Input: 8 points	X20 to X27	X40 to X47	X60 to X67
	Output: 8 points	Y20 to Y27	Y40 to Y47	Y 60 to Y67
FP0-E16YT/E 16YP	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y 60 to Y6F
FP0-E32T/E32P	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F
	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F

I/O No. of FPO analog I/O unit (for right side expansion)

The I/O allocation of FPO analog I/O unit (FPO-A21) is determined by the installation location.

Unit		First expansion	Second expansion	Third expansion
Input	CH0: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	CH1: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)	

I/O No. of FPO A/D converter unit (for right side expansion)

The I/O allocation of FPOA/D converter unit (FP0-A80) is determined by the installation location.

The data of the various channels is switched and read using a program that includes the flag for switching converted data.

Unit		First expansion	Second expansion	Third expansion
Input	CH0, CH2, CH4, and CH6: each 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	CH1, CH3, CH5, and CH7: each 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)

I/O No. of FPO I/O link unit (for right side expansion)

The I/O allocation of FPO I/O link unit (FPO-IOL) is determined by the installation location.

Unit	First expansion	Second expansion	Third expansion
Input: 32 points	$X 20$ to X3F	$X 40$ to $X 5 F$	$X 60$ to $X 7 F$
Output: 32 points	$Y 20$ to $Y 3 F$	$Y 40$ to $Y 5 F$	$Y 60$ to $Y 7 F$

13.3 Relays, Memory Areas and Constants

Item		Number of points and range of memory area available for use		Function
		FPG-C32T	$\begin{aligned} & \text { FPG -C } 24 R 2 \\ & \text { FPG - C } 32 \text { T2 } \end{aligned}$	
Relay	$\begin{aligned} & \hline \text { External input relay (X) } \\ & \text { (* Note 1) } \end{aligned}$	$\begin{aligned} & 512 \text { points } \\ & \text { (X0 to X31F) } \end{aligned}$	$\begin{aligned} & \text { 1,184 points } \\ & \text { (X0 to X73F) } \end{aligned}$	Turn on or off based on external input.
	External output $\quad(\mathrm{Y})$ relay (* Note 1)	$\begin{aligned} & 512 \text { points } \\ & (\mathrm{Y} 0 \text { to } Y 31 \mathrm{~F}) \end{aligned}$	$\begin{aligned} & \text { 1,184 points } \\ & \text { (Y0 to Y73F) } \end{aligned}$	Externally outputs on or off state.
	Internal relay (R) (* Note 2)	1,568 points (R0 to R 97F)		Relay which turns on or off only within program.
	Link relay (* Note 2)	1,024 points (L0 to L63F)		This relay is a shared relay used for PLC link.
	Timer (* Note 2) (T)	1,024 points (T0 to T1007/C1008 to C1023) (* Note 3)		This goes on when the timer reaches the specified time. It corresponds to the timer number.
	Counter (* Note 2) (C)			This goes on when the timer increments. It corresponds to the timer number.
	Special internal relay	176 points (R9000 to R 910F)		Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	$\begin{aligned} & \text { External input relay (WX) } \\ & \text { (* Note 1) } \end{aligned}$	$\begin{aligned} & 32 \text { words } \\ & \text { (WX0 to WX31) } \end{aligned}$	$\begin{aligned} & 74 \text { words } \\ & \text { (WX0 to WX73) } \end{aligned}$	Code for specifying 16 external input points as one word (16 bits) of data.
	External output relay (* Note 1) (WY)	$\begin{aligned} & 32 \text { words } \\ & \text { (WY0 to WY31) } \end{aligned}$	$\begin{aligned} & 74 \text { words } \\ & \text { (WY0 to WY73) } \end{aligned}$	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (* Note 2)	98 words (WR0 to WR97)		Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	64 words (WL0 to WL63)		Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (* Note 2)	32,765 words (DT0 to DT32764)		Data memory used in program. Data is handled in 16-bit units (one word).
	Link data register (* Note 2)	128 words (LD0 to LD127)		This is a shared data memory which is used within the PLC link. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (* Note 2)	1,024 words (SV0 to SV1023)		Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/Counter set (EV) value area (* Note 2)	1,024 words (EV0 to EV1023)		Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.
	Special data register	260 words (DT90000 to DT90259)		Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words (I0 to ID)		Register can be used as an address of memory area and constants modifier.

Item		Range available for use
Constant	Decimal constants (K)(integer type)	K-32768 to K32767 (for 16-bit operation)
		K-2147483648 to K2147483647 (for 32-bit operation)
	Hexadecimal constants	H0 to HFFFF (for 16-bit operation)
		H0 to HFFFFFFFF (for 32-bit operation)
	Decimal constants (F) (monorefined real number)	F - 1.175494×10^{-38} to F-3.402823 $\times 10^{38}$
		F1.175494 $\times 10^{-38}$ to F3.402823 $\times 10^{38}$

Notes

1) The number of points noted above is the number reserved as the calculation memory. The actual number of points available for use is determined by the hardware configuration.
2) If no battery is used, only the fixed area is backed up (counters 16 points: C 1008 to C 1023, internal relays 128 points: R900 to R97F, data registers 55 words: DT32710 to DT32764). When the optional battery is used, all area can be backed up. Areas to be held and not held can be specified using the system registers.
3) The points for the timer and counter can be changed by the setting of system register 5 . The number given in the table are the numbers when system register 5 is at its default setting.

13.4 Table of System Registers

This section explains about system registers for FP Σ.

13.4.1 System Registers

What is the system register area

System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program. There is no need to set system registers for functions which will not be used.

Type of system registers

Hold/non-hold type setting (System registers 5 to 8, 10, 12 and 14)
The values for the timer and counter can be specified by using system register no. 5 to specify the first number of the counter. System registers no. 6 to no. 8 , no. 10, no. 12 , and no. 14 are used to specify the area to be held when a battery is used.

Operation mode setting on error (System registers 4, 20,23 and 26)

S et the operation mode when errors such as battery error, duplicated use of output, I/O verification error and operation error occur.

Time settings (System registers 31 to 34)

S et time-out error detection time and the constant scan time.

ME WNET -W0 PLC link settings (System registers 40 to 45, and 47)

These settings are for using link relays and link registers for MEWNET-WO PLC link communication.
Note that the default value setting is "no PLC link communication"

Input settings (System register 400 to 403)

W hen using the high-speed counter function, pulse catch function or interrupt function, set the operation mode and the input number to be used as a exclusive input.
Tool and COM. ports communication settings (System registers 410 to 419)
Set these registers when the tool port, COM. 1 and COM. 2 ports are to be used for computer link, general communication, PLC link and modem communication.
Note that the default value setting is "Computer link" mode.

Checking and changing the set value of system register

1. Set the control unit in the "PROG" mode.
2. Select "PLC Configuration" under "Option" on the menu bar.
3. When the function for which settings are to be entered is selected in the PLC Configuration dialog box, the value and setting status for the selected system register are displayed. To change the value and setting status, write in the new value and/or select the setting status.
4. To register these settings, click on the "OK" button.

Precautions for system register setting

Sytem register settings are effective from the time they are set.
However, MEWNET-WO PLC link settings, input settings, tool and COM. ports communication settings become effective when the mode is changed from PROG. to RUN. With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.
When the initialized operation is performed, all set system register values (parameters) will be initialized.

13.4.2 Table of System Registers

Item	No.	Name	Default value	Descriptions	
Hold/ Nonhold 1	5	Starting number setting for counter	1008	0 to 1024	SIn case of using back-up battery (option), the setting value will be effective. SIn case of not using back-up battery (option), please keep the default value. Otherwise we can't guarantee the function of hold/non-hold value
	6	Hold type area starting number setting for timer and counter	1008	0 to 1024	
	7	Hold type area starting number setting for internal relays	90	0 to 98	
	8	Hold type area starting number setting for data registers	32710	0 to 32765	
	14	Hold or non-hold setting for step ladder process	Non-hold	Hold/Non-hold	
Hold/ Nonhold 2	10	Hold type area starting number for PLC link relays	64	0 to 64	
	12	Hold type area starting number for PLC link registers	128	0 to 128	
Action on	20	Disable or enable setting for duplicated output	Disabled	Disabled/E nabled	
	23	Operation setting when an I/O verification error occurs	Stop	Stop/Continuation of operation	
	26	Operation setting when an operation error occurs	Stop	Stop/Continuation of operation	
	4	Alarm Battery E rror (Operating setting when battery error occurs)	Disabled	Disabled: When a battery error occurs, a self-diagnostic error is not issued and the ERROR/ALARM LED does not flash. Enabled: When a battery error occurs, a self-diagnostic error is issued and the ERROR/ALARM LED flashes.	
Time setting	31	Wait time setting for multi-frame communication	6500.0 ms	10 to 81900 ms	
	34	Constant value settings for scan time	Normal scan	0: Normal scan 0 to 350 ms : Scans once each specified time interval. 0 : Normal scan 0 to 350 ms : Scans once each specified time interval.	
PLC	40	R ange of link relays used for PLC link	0	0 to 64 words	
setting	41	Range of link data registers used for PLC link	0	0 to 128 words	
	42	Starting number for link relay transmission	0	0 to 63	
	43	Link relay transmission size	0	0 to 64 words	
	44	Starting number for link data register transmission	0	0 to 127	
	45	Link data register transmission size	0	0 to 127 words	
	47	Maximum unit number setting for MEWNET-WO PLC link	16	1 to 16	

Item	No.	Name	Default value	Descriptions	
High speed counter	400	High-speed counter operation mode settings (X0 to X2)	CHO: Do not set input X0 as high-speed counter	CHO	Do not set input X0 as high-speed counter. 2-phase input (X0, X1) 2-phase input (X0, X1), Reset input (X2) Addition input (X0) Addition input (X0), Reset input (X2) Subtraction input (X0) Subtraction input (X0), Reset input (X2) One input (X0, X1) One input (X0, X1), Reset input (X2) Direction decision (X0, X1) Direction decision (X0, X1), Reset input (X2)
			CH1: Do not set input X1 as high-speed counter	CH1	Do not set input X1 as highspeed counter. Addition input (X1) Addition input (X1), Reset input (X2) Subtraction input (X1) Subtraction input (X1), Reset input (X2)
	401	High-speed counter operation mode settings (X3 to X5)	CH 2 : Do not set input X3 as high-speed counter	CH2	Do not set input $X 3$ as high-speed counter. 2-phase input (X3, X4) 2-phase input (X3, X4), Reset input (X5) Addition input (X3) Addition input (X3), Reset input (X5) Subtraction input (X3) Subtraction input (X3), Reset input (X5) One input (X3, X4) One input (X3, X4), Reset input (X5) Direction decision (X3, X4) Direction decision (X3, X4), Reset input (X5)
			CH3: Do not set input X4 as high-speed counter	CH3	Do not set input X4 as highspeed counter. Addition input (X4) Addition input (X4), Reset input (X5) Subtraction input (X4) Subtraction input (X4), Reset input (X5)

Item	No.	Name	Default value	Descriptions
Interrupt input	402	P ulse catch input settings	Not set	$\mathrm{X0} \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$ Specify the input contacts used as pulse catch input.
	403	Interrupt input settings	Not set	X0 X1 X2 X3 X4 X5 X6 X7 \square Specify the input contacts used as interrupt input. X0 X1 X2 X3 X4 X5 X6 X7 \square Specify the effective interrupt edge. (When set: on \rightarrow off is valid)

Notes

- If the operation mode is set to 2-phase, individual, or direction decision, the setting for $\mathbf{C H 1}$ is invalid in system register 400 and the setting for CH3 is invalid in system register 401.
- If reset input settings overlap, the setting of CH1 takes precedence in system register 400 and the setting of CH3 takes precedence in system register 401.
- The settings for system register 402 and 403 are specified on the screen, for each contact.
- If system register $\mathbf{4 0 0}$ to $\mathbf{4 0 3}$ have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].
Example:
When the high-speed counter is being used in the incremental input mode, even if input $X 0$ is specified as an interrupt input and as pulse catch input, those settings are invalid, and input X0 functions as counter input for the high-speed counter.

Item	No.	Name	Default value	Descriptions
Tool port set- ting	$\mathbf{4 1 0}$	Unit No. setting	1	1 to 99
	$\mathbf{4 1 2}$	Selection of modem connection	Disabled	Enabled/Disabled

Note
The communication format when using the PLC link is fixed at
the following settings:
the data length is 8 bits, odd parity, stop bit is 1.
The communication speed (baud rate) is fixed at 115,200 bps.

Item	No.	Name	Default value	Descriptions
COM. 2 port setting	411	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General communication
		Selection of modem connection	Disabled	E nabled/Disabled
	414	Communication format setting	Character bit: 8 bits, Parity check: "with, odd" Stop bit: 1 bit	Enter the settings for the various items. Character bit: 7bits/8bits Parity chk: none/with odd/with even Stop bit: 1bit/2bits The following setting is valid only when the communication mode specified by system register 412 has been set to "General communication". End code (Terminator): CR/CR +LF/None Start code (Header): STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	$\begin{array}{\|l} \hline 2400 \mathrm{bps} \\ 4800 \mathrm{bps} \\ 9600 \mathrm{bps} \\ 19200 \mathrm{bps} \\ 38400 \mathrm{bps} \\ 57600 \mathrm{bps} \\ 115200 \mathrm{bps} \end{array}$
	418	Starting address for received buffer of general (serial data) communication mode	2048	0 to 32764
	419	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note
The communication format when using the PLC link is fixed at the following settings:
the data length is $\mathbf{8}$ bits, odd parity, stop bit is $\mathbf{1}$.
The communication speed (baud rate) is fixed at 115,200 bps.

13.5 Table of Special Internal Relays

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

Relay No.	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. The content of self-diagnostic error is stored in DT90000.
R9001	Not used	
R9002	Not used	
R9003	Not used	
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.
R9005	Backup battery error flag (non-hold)	Turns on for an instant when a backup battery error occurs.
R9006	Backup battery error flag (hold)	Turns on and keeps the on state when a backup battery error occurs. Once a battery error has been detected, this is held even after recovery has been made. It goes off if the power supply is turned off, or if the system is initialized.
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs. The address where the error occurred is stored in DT90017. (indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in DT90018. The contents change each time a new error occurs.
R9009	Carry flag	This is set if an overflow or underflow occurs in the calculation results, and as a result of a shift system instruction being executed.
R900A	> flag	Turns on for an instant when the compared results become larger in the comparison instructions.
R900B	= flag	Turns on for an instant, - when the compared results are equal in the comparison instructions. - when the calculated results become 0 in the arithmetic instructions.
R900C	< flag	Turns on for an instant when the compared results become smaller in the comparison instructions".
R900D	Auxiliary timer instruction flag	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137 (STMR)/F183 (DSTM) auxiliary timer instruction. The this flag turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port communication error	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when scan time exceeds the time specified in system register 34 during constant scan execution. This goes on if 0 has been set using system register 34 .

Relay No.	Name	Description
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan
R9013	Initial (on type) pulse relay	This goes on for only the first scan after operation (RUN) has been started, and goes off for the second and subsequent scans.
R9014	Initial (off type) pulse relay	This goes off for only the first scan after operation (RUN) has been started, and goes on for the second and subsequent scans.
R9015	Step ladder initial pulse relay (on type)	Turns on for an instant only in the first scan of the process the moment the step ladder process is opened.
R9016	Not used	
R9017	Not used	
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.
R901F	Not used	-

Relay No.	Name	Description
R9020	RUN mode flag	Turns off while the mode selector is set to PROG. Turns on while the mode selector is set to RUN.
R9021	Not used	
R9022	Not used	
R9023	Not used	
R9024	Not used	\longrightarrow
R9025	Not used	\longrightarrow
R9026	Message flag	Turns on while the F149 (MSG) instruction is executed.
R9027	Not used	-
R9028	Not used	--3-3-
R9029	Forcing flag	Turns on during forced on/off operation for input/output relay and timer/counter contacts.
R902A	Interrupt enable flag	Turns on while the external interrupt trigger is enabled by the ICTL instruction.
R902B	Interrupt error flag	Turns on when an interrupt error occurs.
R902C	Not used	-
R902D	Not used	\longrightarrow
R902E	Not used	-
R902F	Not used	-

Relay No.	Name		Description
R9030	Not used		
R9031	Not used		
R9032	COM. 1 port communication mode flag		This is on when the general-purpose communication function is being used. It goes off when the MEWTOCOL-COM or the PLC link function is being used.
R9033	P rintinstruction execution flag		Off: Printing is not executed. On: Execution is in progress.
R9034	Run overwrite complete flag		This is the special internal relay that goes on for only the first scan following completion of a rewrite during the RUN operation.
R9035	Not used		
R9036	Not used		
R9037	COM. 1 port communication error flag		This goes on if a transmission error occurs during data communication. This goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9038	COM. 1 port reception done flag during general purpose communicating		Turns on when the end code is received during the general purpose communicating.
R9039	COM. 1 port transmission done flag during general purpose communicating		This goes on when transmission has been completed when using general-purpose communication. It goes off when transmission is requested when using generalpurpose communication.
R903A	High-speed counter control flag	ch0	Turns on while the high-speed counter instructions F166 (HC 15), F167 (HC1R) and the pulse output instructions "F171 (SPDH) to F176 (SPCH)" are executed.
R903B	High-speed counter control flag	ch1	Turns on while the high -speed counter instructions F166 (HC15), F167 (HC1R) and the pulse output instructions "F171 (SPDH) to F176 (SPCH)" are executed.
R903C	High-speed counter control flag	ch2	Turns on while the high-speed counter instructions F166 (HC15), F167 (HC1R) and the pulse output instructions "F171 (SPDH) to F176 (SPCH)" are executed.
R903D	High-speed counter control flag	ch3	Turns on while the high-speed counter instructions $\mathbf{F 1 6 6}$ (HC15), F167 (HC1R) and the pulse output instructions "F171 (SPDH) to F176 (SPCH)" are executed.
R903E	Not used		- - -
R903F	Not used		\square

Relay No.	Name	Description
R9040	Not used	
R9041	COM. 1 port PLC link flag	Turns on while PLC link function is used.
R9042	COM. 2 port communication mode flag	This goes on when the general-purpose communication function is used. It goes off when MEWTOCOL is used.
$\begin{array}{\|l} \hline \text { R9043 to } \\ \text { R9046 } \end{array}$	Not used	$\underline{\square}$
R9047	COM. 2 port communication error flag	This goes on if a transmission error occurs during data communication. This goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9048	COM. 2 port reception done flag during general purpose communicating	Turns on when the end code is received during the general-purpose communication.
R9049	COM. 2 port transmission done flag during general purpose communicating	This goes on when transmission has been completed when using generalpurpose communication. It goes off when transmission is requested when using general-purpose communication.
$\begin{array}{\|l\|} \hline \text { R904A to } \\ \text { R904F } \end{array}$	Not used	
R9050	MEWNET-W0 PLC link transmission error flag	When using MEWNET-W0 - turns on when transmission error occurs at PLC link. - turns on when there is an error in the PLC link area settings.
$\begin{array}{\|l} \hline \text { R9051 to } \\ \text { R905F } \end{array}$	Not used	-

Relay No.	Name		Description
R9060	MEWNET-W0 PLC link transmission assurance relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9061		Unit No. 2	Turns on when Unit No. 2 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9064		Unit No. 5	Turns on when Unit No. 5 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9068		Unit No. 9	Turns on when Unit No. 9 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906D		Unit No. 14	Turns on when UnitNo. 14 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906E		Unit No. 15	Turns on when UnitNo. 15 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in the PLC link mode. Turns off when operation is stopped, when an error is occurring, or when not in the PLC link mode.

Relay No.	Name		Description
R9070	MEWNET-W0 PLC link operation mode relay	Unit No. 1	Turns on when unit No. 1 is in the RUN mode. Turns off when unit No. 1 is in the PROG. mode.
R9071		Unit No. 2	Turns on when unit No. 2 is in the RUN mode. Turns off when unit No. 2 is in the PROG. mode.
R9072		Unit No. 3	Turns on when unit No. 3 is in the RUN mode. Turns off when unit No. 3 is in the PROG. mode.
R9073		Unit No. 4	Turns on when unit No. 4 is in the RUN mode. Turns off when unit No. 4 is in the PROG. mode.
R9074		Unit No. 5	Turns on when unit No. 5 is in the RUN mode. Turns off when unit No. 5 is in the PROG. mode.
R9075		Unit No. 6	Turns on when unit No. 6 is in the RUN mode. Turns off when unit No. 6 is in the PROG. mode.
R9076		Unit No. 7	Turns on when unit No. 7 is in the RUN mode. Turns off when unit No. 7 is in the PROG. mode.
R9077		Unit No. 8	Turns on when unit No. 8 is in the RUN mode. Turns off when unit No. 8 is in the PROG. mode.
R9078		Unit No. 9	Turns on when unit No. 9 is in the RUN mode. Turns off when unit No. 9 is in the PROG. mode.
R9079		Unit No. 10	Turns on when unit No. 10 is in the RUN mode. Turns off when unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when unit No. 11 is in the RUN mode. Turns off when unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when unit No. 12 is in the RUN mode. Turns off when unit No. 12 is in the PROG. mode.
R907C		Unit No. 13	Turns on when unit No. 13 is in the RUN mode. Turns off when unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when unit No. 14 is in the RUN mode. Turns off when unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when unit No. 15 is in the RUN mode. Turns off when unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when unit No. 16 is in the RUN mode. Turns off when unit No. 16 is in the PROG. mode.

13.6 Table of Special Data Registers

The special data registers are one word (16-bit) memory areas which store specific information.
(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs.	A	N/A
DT90001	Not used	-	N/A	N/A
DT90002	Position of abnormal I/O unit for FP Σ left side expansion	When an error occurs at FP Σ expansion I/O unit, the bit corresponding to the unit No. will be set on " 1 ". Monitor using binary display. on " 1 ": error, off " 0 ": normal	A	N/A
DT90003	Not used		N/A	N/A
DT90004	Not used		N/A	N/A
DT90005	Not used		N/A	N/A
DT90006	Position of abnormal intelligent unit for FPE left side expansion	When an error condition is detected in an intelligent unit, the bit corresponding to the unit No. will be set on " 1 ". Monitor using binary display. on " 1 ": error, off "0": normal	A	N/A
DT90007	Not used			
DT90008	Not used		N/A	N/A
DT90009	Communication error flag for COM2	Stores the error contents when using COM. 2 port.	A	N/A
DT90010	Position of I/O verify error unit for FPO right side expansion	When the state of installation of FP0 expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will be set on "1". Monitor using binary display. on " 1 ": error, off " 0 ": normal	A	N/A
DT90011	Position of I/O verify error unit for FP Σ left side expansion	When the state of installation of FP Σ expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will be set on " 1 ". Monitor using binary display. on " 1 ": error, off " 0 ": normal	A	N/A
DT90012	Not used	-	N/A	N/A

(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90013	Not used		N/A	N/A
DT90014	Operation auxiliary register for data shift instruction	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when the data shift instruction, F105 (BSR) or F106 (BSL) is executed. The value can be read and written by executing FO (MV) instruction.	A	A
DT90015	Operation auxiliary register for division instruction	The divided remainder (16-bit) is stored in DT90015 when the division instruction F32 (\%) or $\mathbf{F} 52$ ($\mathbf{B} \%$) instruction is executed. The divided remainder (32-bit) is stored in DT90015 and DT90016 when the division instruction F33 (D\%) or F53 (DB\%) is executed. The value can be read and written by executing FO (MV) instruction.	A	A
DT90016			A	A
DT90017	Operation error address (hold type)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.	A	N/A
DT90018	Operation error address (non-hold type)	The address where a operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the address is 0 . Monitor the address using decimal display.	A	N/A
DT90019	2.5 ms ring counter	The data stored here is increased by one every 2.5ms. (H0 to HFFFF) Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.	A	N/A
DT90020	Not used		N/A	N/A
DT90021	Not used			
DT90022	$\begin{aligned} & \text { Scan time (current value) } \\ & \text { (* Note) } \end{aligned}$	The current scan time is stored here. Scan time is calculated using the formula: Scan time $(\mathrm{ms})=$ stored data $($ decimal $) \times 0.1 \mathrm{~ms}$ Example: K50 indicates 5ms.	A	N/A
DT90023	Scan time (minimum value) (* Note)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time $(\mathrm{ms})=$ stored data $($ decimal $) \times 0.1 \mathrm{~ms}$ Example: K50 indicates 5 ms .	A	N/A
DT90024	Scan time (maximum value) (* Note)	The maximum scan time is stored here. Scan time is calculated using the formula: Scan time $(\mathrm{ms})=$ stored data $($ decimal $) \times 0.1 \mathrm{~ms}$ Example: K125 indicates 12.5 ms .	A	N/A

Note
Scan time display is only possible in RUN mode, and shows the operation cycle time. (In the PROG. mode, the scan time for the operation is not displayed.) The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.
(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90025	Mask condition monitoring register for interrupts (INT 0 to 7)	The mask conditions of interrupts using ICTL instruction can be stored here. Monitor using binary display.	A	N/A
DT90026	Not used		N/A	N/A
DT90027	Periodical interrupt interval (INT 24)	The value set by ICTL instruction is stored. - K0: periodical interrupt is not used - K1 to K3000: 0.5 ms to 1.5 s or 10 ms to 30 s	A	N/A
DT90028	Not used		N/A	N/A
DT90029	Not used			
DT90030	Message 0	The contents of the specified message are stored in these special data registers when F149 (MSG) instruction is executed.	A	N/A
DT90031	Message 1			
DT90032	Message 2			
DT90033	Message 3			
DT90034	Message 4			
DT90035	Message 5			
DT90036	Not used		N/A	N/A
DT90037	Operation auxiliary register for search instruction "F96 (SRC)"	The number of data that match the searched data is stored here when $\mathbf{F 9 6}$ (SRC) instruction is executed.	A	N/A
DT90038	Operation auxiliary register for search instruction "F96 (SRC)"	The position of the first matching data is stored here when an $\mathbf{F 9 6}$ (SRC) instruction is executed.	A	N/A
DT90039	Not used	-	N/A	N/A
DT90040	Potentiometer (volume) input V0	The potentiometer value (K 0 to K 1000) is stored here. This value can be used in analog timers and other applications by using the program to read this value to a data register.$\text { V } 0 \rightarrow \text { DT90040 }$$\text { V } 1 \rightarrow \mathrm{DT} 90041$	A	N/A
DT90041	Potentiometer (volume) input V1			
DT90042		Used by the system.	N/A	N/A
DT90043	\longrightarrow	Used by the system.	N/A	N/A

(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90044 DT90045	High- For speed ch0 counter elapsed value 	The elapsed value (32-bit data) for the high-speed counter is stored here. The value can be read and written by executing F1 (DMV) instruction.	A	A
DT90046 DT90047	High- For speed ch0 counter target value	The target value (32-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions, to be used when the high-speed counter related instruction "F166, F167, F171, F175 or F176" is executed.The value can be read by executing $\mathbf{F 1}$ (DMV) instruction.	A	N/A
DT90048 DT90049	High- For speed ch1 counter elapsed value area	The elapsed value (32-bit data) for the high-speed counter is stored here.The value can be read and written by executing F1 (DMV) instruction.	A	A
DT90050 DT90051	High- For speed ch1 counter target value area 	The target value (32-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions, to be used when the high-speed counter related instruction "F166 or F167" is executed. The value can be read by executing F1 (DMV) instruction.	A	N/A
DT90052	High-speed counter and pulse output control flag	A value can be written with $\mathbf{F O}$ (MV) instruction to reset the high-speed counter, disable counting, continue or clear high-speed counter instruction.	N/A	A

(A: Available, N/A: Not available)

Address	Name	Description			Reading	Writing
DT90053	Clock/calendar monitor (hour/minute)	Hour and minute data of the clock/calendar are stored here. This data is read-only data; it cannot be overwritten.			A	N/A
DT90054 DT90055	Clock/calendar setting (minute/second)	The year, month, day, hour, minute, second, and day-of-theweek data for the calendar timer is stored. The built-in calendar timer will operate correctly through the year 2099 and supports leap years. The calendar timer can be set (the time set) by writing a value using a programming tool software or a program that uses the $\mathbf{F 0}$ (MV) instruction.			A	A
DT90055	Clock/calendar setting (day/hour)	program that uses the $\mathbf{F 0}$ (MV) instruction.				
DT90056	Clock/calendar setting (year/month)	DT90054	Minute data H00 to H59	$\begin{aligned} & \text { Second data } \\ & \text { H00 to H59 } \end{aligned}$		
		DT90055	$\begin{aligned} & \text { Day data } \\ & \text { H01 to H31 } \end{aligned}$	$\begin{aligned} & \text { Hour data } \\ & \text { H00 to H23 } \end{aligned}$		
DT90057	Clock/calendar setting (day-of-theweek)	DT90056	$\begin{aligned} & \text { Year data } \\ & \text { H00 to H99 } \end{aligned}$	Month data H01 to H12		
		DT90057		Day-of-the-week data H00 to H06		

(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90058	Clock/calendar time setting and 30 seconds correction register	The clock/calendar is adjusted as follows. When setting the clock/calendar by program By setting the the highest bit of DT90058 to 1, the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0. (Cannot be performed with any instruction other than FO (MV) instruction.) Example: Set the time to 12:00:00 on the 5th day when the X 0 turns on. $\left.\left\lvert\, \begin{array}{rl\|l} \text { X0 } & \begin{array}{l} \text { Inputs } 0 \text { minutes } \\ \text { and } 0 \text { seconds } \end{array} \\ \text { [F0 MV, H 512, DT90055 } \end{array}\right.\right] \begin{aligned} & \text { Inputs 12th } \\ & \text { hour 5th day } \end{aligned}$ If you changed the values of DT90054 to DT90057 with the programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058. When the correcting times less than 30 seconds By setting the lowest bit of DT90058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0 . Example: Correct to 0 seconds with X0 turns on $\mid \stackrel{\text { XO }}{\mid- \text { (DF HO MV, H }} \text { 1, DT90058 }] \left\lvert\, \begin{aligned} & \text { Correct to } 0 \\ & \text { second } \end{aligned}\right.$ At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the between 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 second; and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second.	A	A

Address	Name	Description	Reading	Writing
DT90059	Serial communication error code	Error code is stored here when a communication error occurs.	N/A	N/A
DT90060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the proccess starts up, the bit corresponding to the process number turns on " 1 ".	A	A
DT90061	Step ladder process (16 to 31)			
DT90062	Step ladder process (32 to 47)			
DT90063	$\begin{array}{\|l} \hline \text { Step ladder pro- } \\ \text { cess (48 to 63) } \end{array}$			
DT90064	Step ladder process (64 to 79)			
DT90065	Step ladder process (80 to 95)			
DT90066	Step ladder process (96 to 111)			
DT90067	Step ladder process (112 to 127)	Monitor using binary display. Example: $\begin{array}{lllll}15 & 11 & 7 & 3 & 0 \text { (Bit No.) }\end{array}$		
DT90068	Step ladder process (128 to 143)	DT90060 \square		
DT90069	Step ladder process (144 to 159)	$\text { 1: Executing } \quad 0: \text { Not-executing }$		
DT90070	Step ladder process (160 to 175)	A programming tool software can be used to write data.		
DT90071	Step ladder process (176 to 191)			
DT90072	Step ladder process (192 to 207)			
DT90073	Step ladder process (208 to 223)			
DT90074	$\begin{array}{\|l} \hline \text { Step ladder pro- } \\ \text { cess (224 to 239) } \end{array}$			
DT90075	Step ladder pro- cess (240 to 255)			
DT90076	Step ladder process (256 to 271)			

(A: Available, N/A: Not available)

(A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
$\begin{array}{\|l} \hline \text { DT90123 } \\ \text { to } \\ \text { DT90125 } \end{array}$	Not used		N/A	N/A
DT90126	Forced Input/ Output unit No.	Used by the system.		
$\begin{array}{\|l\|} \hline \text { DT90127 } \\ \text { to } \\ \text { DT90139 } \end{array}$	Not used			
DT90140	MEWNET-W0PLC link status	The number of times the receiving operation is performed.	A	N/A
DT90141		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90142		The minimum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90143		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90144		The number of times the sending operation is performed.		
DT90145		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90146		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90147		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
$\begin{array}{\|l\|} \hline \text { DT90148 } \\ \text { to } \\ \text { DT90155 } \end{array}$	Not used	-	N/A	N/A
DT90156	MEWNET-W0	Area used for measurement of receiving interval.	A	N/A
DT90157		Area used for measurement of sending interval.		
DT90158	Not used	—	N/A	N/A
DT90159				
DT90160	MEWNET-WO PLC link unit No.	Stores the unit No. of PLC link	A	N/A
DT90161	MEWNET-WO PLC link error flag	Stores the error contents of PLC link	A	N/A
$\begin{array}{\|l\|} \hline \text { DT90162 } \\ \text { to } \\ \text { DT90169 } \end{array}$	Not used	-	N/A	N/A

(A: Available, N/A: Not available)

Address	Name		Description		Reading	Writing
DT90170	MEWNET-W0 PLC link status		Duplicated destination for PLC inter-link address		A	N/A
DT90171			Counts how many times a token is lost.			
DT90172			Counts how many times two or more tokens are detected.			
DT90173			Counts how many times a signal is lost.			
DT90174			No. of times undefined commands have been received			
DT90175			No. of times sum check errors have occurred during reception			
DT90176			No. of times format errors have occurred in received data			
DT90177			No. of times transmission errors have occurred			
DT90178			No. of times procedural errors have occurred			
DT90179			No. of times overlapping parent units have occurred			
DT90180 to DT90189	Not used				N/A	N/A
DT90190	High-speed counter control flag monitor for ch0		This monitors the data specified in DT90052.43210		A	N/A
DT90191	High-speed counter control flag monitor for ch1					
DT90192	High-speed counter control flag monitor for ch2		High-speed counter instruction $0:$ Continue/1: Clear Pulse output $0:$ Continue/1: Stop			
DT90193	High-speed counter control flag monitor for ch3		Hardware reset Count Software reset	$\begin{aligned} & \text { 0: Enable/1: Disable } \\ & \hline \text { 0: Enable/1: Disable } \\ & \hline \text { 0: No/1: Yes } \\ & \hline \end{aligned}$		
$\begin{array}{\|l\|} \hline \text { DT90194 } \\ \text { to } \\ \text { DT90199 } \end{array}$	Not used				N/A	N/A
DT90200	High-speed counter elapsed value	Forch2	The elapsed value (32-bit data) for the high-speed counter is stored here. The value can be read and written by executing F1 (DMV) instruction.		A	A
DT90201						
DT90202	High-speed counter target value	For ch2	The target value (32-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions, to be used when the high-speed counter related instruction "F166, F167, F171, F175 or $\mathbf{F 1 7 6}$ " is executed. The value can be read by executing F1 (DMV) instruction.		A	N/A
DT90203						
DT90204	High-speed counter elapsed value	For ch3	The elapsed value (32-bit data) for the high-speed counter is stored here.The value can be read and written by executing F1 (DMV)instruction.		A	A
DT90205						

(A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90206	High-speed counter target value	For ch3	The target value (32-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.	A	N/A
DT90207		Target values have been preset for the various instructions, to be used when the high-speed counter related instruction "F166 or F167" is executed. The value can be read by executing F1 (DMV) instruction.	N/A	N/A	
DT90208 to DT90218	Not used				

(A: Available, N/A: Not available)

Address	Name		Description			Reading	Writing
DT90219	Unit No. (Station No.) selection for DT90220 to DT90251		0: Unit No. (Station No.) 1 to 8, 1: Unit No. (Station No.) 9 to 16			A	N/A
DT90220	$\begin{array}{\|l\|} \hline \text { PLC link } \\ \text { unit (station) } \\ \text { No. } 1 \text { or } 9 \end{array}$	System register 40 and 41	The contents of the system register settings pertaining to the PLC inter-link function for the various unit numbers are stored as shown below. Example: When DT90219 is 0			A	N/A
DT90221		System register 42 and 43					
DT90222		System register 44 and 45					
DT90223		System register 46 and 47					
DT90224	PLC link unit (station) No. 2 or 10	$\begin{aligned} & \text { System regis- } \\ & \text { ter } 40 \text { and } 41 \end{aligned}$					
DT90225		$\begin{aligned} & \text { System regis- } \\ & \text { ter } 42 \text { and } 43 \end{aligned}$					
DT90226		System register 44 and 45					
DT90227		$\begin{aligned} & \text { System regis- } \\ & \text { ter } 46 \text { and } 47 \end{aligned}$					
DT90228	PLC link unit (station) No. 3 or 11	System register 40 and 41					
DT90229		$\begin{array}{\|l\|} \hline \text { System regis- } \\ \text { ter } 42 \text { and } 43 \end{array}$					
DT90230		System regis- ter 44 and 45					
DT90231		System regis-					
DT90232	PLC link unit (station) No. 4 or 12	$\begin{array}{\|l\|} \hline \text { System regis- } \\ \text { ter } 40 \text { and } 41 \end{array}$					
DT90233		System regis- ter 42 and 43					
DT90234		System regis- ter 44 and 45					
DT90235		$\begin{aligned} & \text { System regis- } \\ & \text { ter } 46 \text { and } 47 \end{aligned}$					
DT90236	PLC link unit (station) No. 5 or 13	$\begin{aligned} & \text { System regis- } \\ & \text { ter } 40 \text { and } 41 \end{aligned}$					
DT90237		System regis- ter 42 and 43					
DT90238		$\begin{aligned} & \hline \text { System regis- } \\ & \text { ter } 44 \text { and } 45 \end{aligned}$					
DT90239		System regis- ter 46 and 47					

(A: Available, N/A: Not available)

Address	Name	Name	Description		Reading	Writing
DT90240	PLC link unit (station) No. 6 or 14	System register 40 and 41	The contents of the system register settings pertaining to the PLC inter-link function for the various unit numbers are stored as shown below.		A	N/A
DT90241		System register 42 and 43				
DT90242		System register 44 and 45				
DT90243		System register 46 and 47				
DT90244	PLC link unit (station) No. 7 or 15	System register 40 and 41	Example: When DT90219 is 0		A	N/A
DT90245		System register 42 and 43				
DT90246		System register 44 and 45				
DT90247		System register 46 and 47				
DT90248	PLC link unit (station) No. 8 or 16	System register 40 and 41				
DT90249		System register 42 and 43				
DT90250		System register 44 and 45				
DT90251		System register 46 and 47				
$\begin{array}{\|l\|} \hline \text { DT90252 } \\ \text { to } \\ \text { DT90255 } \end{array}$	Not used			-	N/A	N/A
DT90256	Unit No. (Station No.) switch monitor for COM port		Used by the system.		N/A	N/A

13.7 Table of Error Cords

This section contains the syntax check error and self-diagnostic error for the FP Σ.

13.7.1 Table of Syntax Check Error

Error code	Name	Operation status	Description and steps to take
E1	S yntax error	Stops	A program with a syntax error has been written. Change to PROG. mode and correct the error.
E2	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay. (This also occurs if the same timer/counter number is being used.) Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions and KP instructions. Or, set the duplicated output to enable in system register 20.
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (J P and LBL), one instruction is either missing or in an incorrect position. Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting. Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.
E5	Program area error	Stops	An instruction which must be written to a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). Change to PROG. mode and enter the instruction into the correct area.
E6	Compilememory full error	Stops	The program stored in the FP Σ is too large to compile in the program memory. Change to PROG. mode and reduce the total number of steps for the program.
E7	High-level instruction type error	Stops	In the program, high-level instructions, which execute in every scan and at the leading edge of the trigger, are programmed to be triggered by one contact. (e.g., FO (MV) and PO (PMV) are programmed using the same trigger continuously.) Correct the program so that the high-level instructions executed in every scan and at the leading edge are triggered separately.
E8	High-level instruction operand combination error	Stops	There is an incorrect operand in an instruction which requires a specific combination operands (for example, the operands must all be of a certain type). Enter the correct combination of operands.

13.7.2 Table of Self-Diagnostic Error

Error code	Name		Operation status	Description and steps to take	
E26	User's ROM error		Stops	Probably a hardware abnormality. Please contact your dealer.	
E27	Unit installation error		Stops	The number of installed units exceed the limitations. Turn off the power supply and check the restrictions on unit combinations.	
E28	System register error		Stops	Probably an abnormality in the system register. Check the system register setting.	
E30	Interrupt error 0		Stops	Probably a hardware abnormality. Please contact your dealer.	
E31	Interrupt error 1		Stops	An interrupt occurred without an interrupt request. A hardware problem or error due to noise is possible. Turn off the power and check the noise conditions.	
E32	Interrupt error 2		Stops	An interrupt occurred without an interrupt request. A hardware problem or error due to noise is possible. Turn off the power and check the noise conditions.	
			There is no interrupt program for an interrupt which occurred. Check the number of the interrupt program and change it to agree with the interrupt request.		
E34	I/O status error			Stops	An abnormal unit is installed. Replace the unit with a new one.
E40	Position of abnormal I/O unit		Stops	An abnormality in an I/O unit is occurred. Check the contents of special data register "DT90002" and locate the abnormal FP Σ expansion I/O unit. Then check the unit.	
E41	Intelligent unit error		Stops	An abnormality in an intelligent unit. Check the contents of special data register "DT90006" and locate the abnormal FPE intelligent unit.	
E42	I/O unit verify error		Selectable	The connection condition of I/O unit has changed compared to that at time of power-up. Check the contents of special data register (FPO expansion I/O unit: "DT90010", FP 5 expansion I/O unit: "DT90011") and locate the erroneous I/O unit. Set the operation status using system register 23 to continue operation.	
E45	Operation error		Selectable	Operation became impossible when a high-level instruction was executed. The causes of calculation errors vary depending on the instruction. Set the operation status using system register 26 to continue operation.	
E50	Battery error		Selectable	The voltage of the backup battery lowered or the battery is not connected to the control unit. Check the connection of the backup battery and then replace battery if necessary. By setting the system register 4, you can issued this self-diagnostic error. (In that case, the ERROR/ALARM LED flashes.)	
$\begin{array}{\|l\|} \hline \text { E100 } \\ \text { to } \\ \text { E299 } \end{array}$	Self-diagnostic error set by F148 (ERR) instruction	E100 to E199 E200 to E299	Stops	The self-diagnostic error specified by the F148 (ERR) instruction is occurred. Take steps to clear the error condition according to the specification you chose.	

13.8 Table of Instructions

Table of Basic Instructions

Name	B oolean	Symbol	Description	Steps (* Note)
Sequence basic instructions				
Start	ST	$\stackrel{X, Y, R, L, T, C}{ }$	Begins a logic operation with a Form A (normally open) contact.	1 (2)
Start Not	ST/	$\stackrel{\mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{~L}, \mathrm{~T}, \mathrm{C}}{\mid / l^{\prime}}$	Begins a logic operation with a Form B (normally closed) contact.	1 (2)
Out	OT	$\stackrel{Y, R, L}{[j}$	Outputs the operated result to the specified output.	1
Not	/	- 1 -	Inverts the operated result up to this instruction.	1
AND	AN	$\overline{X, Y, R, L, L, T, C}$	Connects a Form A (normally open) contact serially.	1 (2)
AND Not	AN/	$\xrightarrow{\text { X,Y,R,L, L, }, \mathrm{C}}$	Connects a Form B (normally closed) contact serially.	1 (2)
OR	OR	$\xrightarrow{\text { X,Y, , , , , T, } \downarrow}$	Connects a Form A (normally open) contact in parallel.	1 (2)
OR Not	OR/	$\xrightarrow{\text { X,Y,R,R,L,T,C }}$	Connects a Form B (normally closed) contact in parallel.	1 (2)
Alternative out	ALT	$\xrightarrow[\langle, R, L]{\langle A}\rangle$	Inverts the output condition (on/off) each time the leading edge of the trigger is detected.	3
AND stack	ANS	$\begin{aligned} & \hline-\vdash \longmapsto \\ & -\longmapsto \longmapsto \end{aligned}$	Connects the multiple instruction blocks serially.	1
OR stack	ORS	$\begin{aligned} & \text { HЮ } \\ & -\longmapsto \longmapsto \end{aligned}$	Connects the multiple instruction blocks in parallel.	1
Push stack	PSHS		Stores the operated result up to this instruction.	1
Read stack	RDS		Reads the operated result stored by the PSHS instruction.	1
Pop stack	POPS		Reads and clears the operated result stored by the PSHS instruction.	1
Leading edge differential	DF	- (DF)	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1
Trailing edge differential	DF/	-(DF/)-	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1

Note

When T256/C256 or higher, R9000 or higher is used, the number of steps is the number in parentheses.

Name	B oolean	Symbol	Description	Steps (* Note)
Leading edge differential (initial execution type)	DFI	-(DFI) -	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1
Set	SET	$\xrightarrow[\langle S\rangle]{Y, R, L}$	Output is set to and held at on.	3
Reset	RST	$\stackrel{Y, R, L}{\langle R\rangle}$	Output is set to and held at off.	3
Keep	KP	$\underset{\substack{\text { Reset } \\ \hdashline}}{\substack{\text { Set }}}{ }^{\text {KP }} \perp$	Outputs at set trigger and holds until reset trigger turns on.	1
No operation	NOP	- - -	No operation.	1

Name	Boolean	Symbol	Description	Steps (* Note)

Basic function instructions

On-delay timer	TML		After set value " n " $\times 0.001$ seconds, timer contact "a" is set to on.	3 (4)
	TMR		After set value " n " $\times 0.01$ seconds, timer contact "a" is set to on.	3 (4)
	TMX		After set value " n " $\times 0.1$ seconds, timer contact "a" is set to on.	3 (4)
	TMY		After set value " n " $\times 1$ second, timer contact "a" is set to on.	4 (5)
Auxiliary timer (16-bit)	$\begin{aligned} & \text { F137 } \\ & \text { (STMR) } \end{aligned}$		After set value " S " $\times 0.01$ seconds, the specified output and R900D are set to on.	5
Auxiliary timer (32-bit)	$\begin{aligned} & \text { F183 } \\ & \text { (DSTM) } \end{aligned}$		After set value " S " $\times 0.01$ seconds, the specified output and R900D are set to on.	7
Counter	CT		Decrements from the preset value " n ".	3 (4)
UP/DOWN counter	F118 (UDC)		Increments or decrements from the preset value " S " based on up/down input.	5
Shift register	SR		Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1
Left/right shift register	$\begin{aligned} & \text { F119 } \\ & \text { (LRSR) } \end{aligned}$		Shifts one bit of 16 -bit data range specified by "D1" and "D2" to the left or to the right.	5

Control instructions

Master control relay	MC	H	Starts the master control program.	2
Master control relay end	MCE		Ends the master control program.	2
J ump Label	$\begin{aligned} & \hline \text { JP } \\ & \text { LBL } \end{aligned}$		The program jumps to the label instruction and continues from there.	2 1

Note

When TM256 or higher or CT256 or higher is set, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps (* Note)
Loop Label	$\begin{aligned} & \text { LOOP } \\ & \text { LBL } \end{aligned}$	$\left.\begin{array}{\|c}\text { (LBL } \\ \text { n) }\end{array}\right]$	The program jumps to the label instruction and continues from there (the number of jumps is set in " S ").	4
End	ED	\square (ed H	The operation of program is ended. Indicates the end of a main program.	1
Conditional end	CNDE	$H \longmapsto(C N D E)$	The operation of program is ended when the trigger turns on.	1
Eject	EJECT	\square (E) ECT)-	Adds page break for use when printing.	1

Name	Boolean	Symbol	Description	Steps
Step ladder instructions				
Start step	SSTP	- (SSTP n)-	The start of program "n" for process control	3
Next step	NSTL	$H \longmapsto\left(\begin{array}{c}\text { NSTL } \\ \end{array}\right.$	Start the specified process " n " and clear the process currently operated. (Scan execution type)	3
	NSTP	\longmapsto (NSTP n \dagger	Start the specified process " n " and clear the process currently operated. (Pulse execution type)	3
Clear step	CSTP	$H \longmapsto($ STP n)	Resets the currently operated process "n".	3
Step end	STPE	- STPE \dagger	End of step ladder area	1
Clear multiple steps	SCLR	H \dagger [SCLR n1, n2 \quad \|	Resets the currently operated processes " $n 1$ " to " n 2 ".	5
Subroutine instructions				
Subroutine call	CALL	$H \longmapsto(c a l l) ~ n) ~$	Executes the specified subroutine. When returning to the main program, outputs in the subroutine program are maintained.	2
Subroutine entry	SUB		Indicates the start of the subroutine program " n ".	1
Subroutine return	RET		Ends the subroutine program.	1
Interrupt instructions				
Interrupt	INT		Indicates the start of the interrupt program "n".	1
Interrupt return	IRET	-(RET)	Ends the interrupt program.	1
Interrupt control	ICTL		Select interrupt enable/disable or clear in "S1" and "S2" and execute.	5
Special setting instructions				
Communication conditions setting	SYS1		Change the communication conditions for the COM port or tool port based on the contents specified by the character constant.	13
Password setting			Change the password specified by the PLC based on the contents specified by the character constant.	
Interrupt setting			Set the interrupt input based on the contents specified by the character constant.	
PLC link time setting			Set the system setting time when a PLC link is used, based on the contents specified by the character constant.	
RS485 response time control			Change the communication conditions of the COM. port or tool port for RS485 based on the contents specified by the character constant.	
System registers "No. 40 to No. 47" changing	SYS2	$H^{-15952,5,01,02]}$	Change the setting value of the system register for the PLC link function.	7

Name	Boolean	Symbol	Description	Steps
Data comparis on instructions				
$\begin{array}{\|l} \hline \text { 16-bit data } \\ \text { comparison } \\ \text { (Start) } \end{array}$	ST=	$\Gamma^{=}{ }^{\text {s1, } 52} \downarrow$	Begins a logic operation by comparing two 16-bit data in the comparative condition "S $1=$ S2".	5
	ST<>	$\Gamma^{<\gg 51,52} \square$	Begins a logic operation by comparing two 16-bit data in the comparative condition " $\mathrm{S} \neq \mathrm{S} 2$ ".	5
	ST>	$\left.\right\|^{>} \mathrm{s} 1, \mathrm{~s} 2 \ldots$	Begins a logic operation by comparing two 16-bit data in the comparative condition "S $1>$ S2".	5
	ST>=	$\left.\right\|^{\ggg 51,52} \square$	Begins a logic operation by comparing two 16-bit data in the comparative condition " $\mathrm{S} \mathbb{S} 2$ ".	5
	ST<	$\Gamma^{<} \mathrm{s} 1, \mathrm{~s} 2 _$	Begins a logic operation by comparing two 16-bit data in the comparative condition " $\mathrm{S} 1<\mathbf{S} 2$ ".	5
	ST<=	$\Gamma^{<=s}{ }^{\text {s } 1, \mathrm{~s} 2} \square$	Begins a logic operation by comparing two 16-bit data in the comparative condition "S延 S2".	5
16-bit data comparison (AND)	AN=	$\Gamma^{=} \mathrm{s} 1, \mathrm{~s} 2 \quad$ 乙	Connects a contact serially by comparing two 16 -bit data in the comparative condition "S 1=S2".	5
	AN<>		Connects a contact serially by comparing two 16-bit data in the comparative condition "S $1 \neq \mathrm{S} 2$ ".	5
	AN>	$\check{\sim}^{>} \mathrm{s} 1, \mathrm{~s} 2 \quad \beth$	Connects a contact serially by comparing two 16-bit data in the comparative condition "S 1>S2".	5
	AN $>=$	$\Gamma^{>}=$s1, $52 \quad \square$	Connects a contact serially by comparing two 16-bit data in the comparative condition "S 1 \geqq S2".	5
	AN<	$\check{L}^{<} \mathrm{si,s2} \quad \beth$	Connects a contact serially by comparing two 16 -bit data in the comparative condition " $\mathrm{S} 1<\mathrm{S} 2$ ".	5
	AN $<=$	$\check{L}^{<=~ S 1, ~ s 2 ~} \quad \square^{\text {a }}$	Connects a contact serially by comparing two 16-bit data in the comparative condition "S1 S S2".	5
16-bit data comparison (OR)	OR=	$\Gamma=51,52 \quad \beth$	Connects a contact in parallel by comparing two 16-bit data in the comparative condition "S 1=S2".	5
	OR<>	$\Gamma^{<>S 1, s 2} \quad \beth$	Connects a contact in parallel by comparing two 16-bit data in the comparative condition "S $1 \neq$ S2".	5
	OR >	$\Gamma^{\gg} \quad \mathrm{si}, \mathrm{s2} \quad \beth \square$	Connects a contact in parallel by comparing two 16-bit data in the comparative condition "S $1>$ S 2 ".	5
	OR > $=$	$\Gamma^{>=}=51,52 \quad \beth$	Connects a contact in parallel by comparing two 16-bit data in the comparative condition "S $1 \geqq$ S2".	5
	OR<	$\Gamma^{\ll} 81,52 \quad \beth \square$	Connects a contact in parallel by comparing two 16 -bit data in the comparative condition " $\mathrm{S} 1<\mathrm{S} 2$ ".	5
	OR<=	$\Gamma^{<=S 1, S 2} \quad \beth$	Connects a contact in parallel by comparing two 16-bit data in the comparative condition " $51 \leqq$ S2".	5

Name	Boolean	Symbol	Description	Steps
32－bit data comparison （Start）	STD＝	$\vdash^{\text {L }}$ ，s1，s2 $\quad 乙$	Begins a logic operation by comparing two 32－bit data in the comparative condition＂（S 1＋1，S 1$)=$ （S2＋1，S2）＂．	9
	STD＜＞	$\Vdash^{\text {D }}$＞S1，S2 $\quad 乙$	Begins a logic operation by comparing two 32－bit data in the comparative condition＂（S1＋1，S $1 \neq$ （S2＋1，S2）＂．	9
	STD＞	$\vdash^{\text {D＞}}$ S $51,52 \quad \beth$	Begins a logic operation by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>$ （S2＋1，S2）＂．	9
	STD＞＝	$\vdash^{\text {D＞}}=$ s1，s2 $\quad 乙$	Begins a logic operation by comparing two 32－bit data in the comparative condition＂（S1＋1，S1 （S2＋1，S2）＂．	9
	STD＜		Begins a logic operation by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜ （S2＋1，S2）＂．	9
	STD＜＝	$\Vdash^{\text {D }}$＝S1，S2 $\quad 乙$	Begins a logic operation by comparing two 32－bit data in the comparative condition＂$(S 1+1, S 1 \leqq$ （S2＋1，S2）＂．	9
32－bit data comparison （AND）	AND＝	$\Gamma^{\mathrm{D}=} \mathrm{si,s2} \quad \beth$	Connects a contact serially by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， S1）$=(S 2+1, S 2)$＂．	9
	AND＜＞	$\Gamma^{\text {D }<>51,52} \quad \square$	Connects a contact serially by comparing two 32－bit data in the comparative condition＂（S1＋1， $\text { S1) } \neq(S 2+1, S 2)^{\prime \prime}$	9
	AND＞	$\square^{\text {D＞}}$ S1，s2 $\quad 乙$	Connects a contact serially by comparing two 32－bit data in the comparative condition＂（S1＋1， S1）$>($ S2 +1, S2）＂．	9
	AND＞＝	$\Gamma^{\text {D＞}}=51,52 \quad \square$	Connects a contact serially by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， S1）$\geqq(S 2+1, \mathrm{~S} 2)$＂．	9
	AND＜		Connects a contact serially by comparing two 32－bit data in the comparative condition＂（S 1＋1， S1)<(S2+1, S2)".	9
	AND＜＝	$\square^{\text {D＜}}=\mathrm{S1}, \mathrm{~s} 2 \quad \square$	Connects a contact serially by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， S1）$\leqq(S 2+1, S 2)$＂．	9
32－bit data comparison （OR）	ORD＝	$\Gamma^{\mathrm{D}=} \mathrm{S} 1, \mathrm{S2} \quad \beth$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）$=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9
	ORD＜＞	$\Gamma^{\mathrm{D}<>\mathrm{S} 1, \mathrm{~S} 2} \quad \square$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）\＃（ $\mathrm{S} 2+1, \mathrm{~S} 2$ ）＂．	9
	ORD＞	$\begin{array}{lll} \hline \mathrm{C}> & \mathrm{s} 1, \mathrm{~s} 2 & \beth \end{array}$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）$>($ S2 2 1，S2）＂．	9
	ORD＞＝	$\Gamma^{\mathrm{D}>}=\mathrm{S} 1, \mathrm{~s} 2 \quad \beth$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）$\geqq(S 2+1, S 2)^{\prime \prime}$ ．	9
	ORD＜	$\begin{array}{lll} \hline \Gamma^{\mathrm{D}<} & \mathrm{s} 1, \mathrm{~s} 2 & \beth \end{array}$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（S 1＋1， S1）＜（S2＋1，S2）＂．	9
	ORD＜＝	$\Gamma^{\mathrm{D}<=} \mathrm{S} 1, \mathrm{~S} 2 \quad \beth$	Connects a contact in parallel by comparing two 32－bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）$\leqq(S 2+1, S 2)$＂．	9

Table of High-level Instructions

No.	Name	Boolean	Operand	Description	Steps
Data transfer instructions					
F0	16-bit data move	MV	S, D	$(S) \rightarrow$ (D)	5
F1	32-bit data move	DMV	S, D	$(S+1, S) \rightarrow(D+1, D)$	7
F2	16-bit data invert and move	MV/	S, D	$(\bar{S}) \rightarrow$ (D)	5
F3	32-bit data invert and move	DMV/	S, D	$(\overline{S+1, ~ S) ~} \rightarrow$ (D+1, D)	7
F5	Bit data move	BTM	S, n, D	The specified one bit in " S " is transferred to the specified one bit in " D ". The bit is specified by " n ".	7
F6	Hexadecimal digit (4-bit) data move	DGT	S, n, D	The specified one digit in " S " is transferred to the specified one digit in " D ". The digit is specified by " n ".	7
F7	Two 16-bit data move	MV2	S1, S2, D	$\begin{aligned} & \hline \text { (S1) } \rightarrow \text { (D), } \\ & (\text { S2 }) \rightarrow(D+1) \end{aligned}$	7
F8	Two 32-bit data move	DMV2	S1, S2, D	$\begin{aligned} & (S 1+1, S 1) \rightarrow(D+1, D), \\ & (S 2+1, S 2) \rightarrow(D+3, D+2) \end{aligned}$	11
F10	Block move	BKMV	S1, S2, D	The data between " S 1 " and " S 2 " is transferred to the area starting at " D ".	7
F11	Block copy	COPY	S, D1, D2	The data of " S " is transferred to the all area between "D1" and "D2".	7
F12	Data read from F-ROM	ICRD	S1, S2, D	The data stored in the F-ROM specified by "S1" and "S2" are transferred to the area starting at "D".	11
P13	Data write to F-ROM	PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the F-ROM starting at " D ".	11
F15	16-bit data exchange	XCH	D1, D2	(D1) \rightarrow (D2), (D2) \rightarrow (D1)	5
F16	32-bit data exchange	DXCH	D1, D2	$\begin{aligned} & \hline \text { (D1+1, D1) } \rightarrow(\text { D2+1, D2) } \\ & (\text { D2+1, D2) } \rightarrow(\text { D1+1, D1) } \end{aligned}$	5
F17	Higher/ lower byte in 16-bit data exchange	SWAP	D	The higher byte and lower byte of "D" are exchanged.	3
F18	16-bit data block exchange	BXCH	$\begin{array}{\|l} \hline \text { D1, D2, } \\ \text { D3 } \end{array}$	Exchange the data between "D1" and "D2" with the data specified by "D3".	7

No.	Name	Boolean	Operand	Description	Steps
Binary arithmetic instructions					
F20	16-bit data addition	+	S, D	$(\mathrm{D})+(\mathrm{S}) \rightarrow(\mathrm{D})$	5
F21	32-bit data addition	D+	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F22	16-bit data addition (Destination setting)	+	S1, S2, D	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F23	32-bit data addition (Destination setting)	D+	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11
F25	16-bit data subtraction	-	S, D	(D) - (S) \rightarrow (D)	5
F26	32-bit data subtraction	D-	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F27	16-bit data subtraction (Destination setting)	-	S1, S2, D	$(\mathrm{S} 1)-(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F28	32-bit data subtraction (Destination setting)	D-	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11
F30	16-bit data multiplication	*	S1, S2, D	$(\mathrm{S} 1) \times(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F31	32-bit data multiplication	D*	S1, S2, D	$(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow(D+3, D+2, D+1, D)$	11
F32	16-bit data division	\%	S1, S2, D	$(\mathrm{S} 1) \div(\mathrm{S} 2) \rightarrow$ quotient (D) remainder (DT90015)	7
F33	32-bit data division	D\%	S1, S2, D	$\begin{aligned} & \hline(\mathrm{S} 1+1, \mathrm{~S} 1) \div(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \text { quotient (D+1, D) } \\ & \text { remainder (DT90016, DT90015) } \end{aligned}$	11
F34	16-bit data multiplication (result in one word)	*W	S1, S2, D	$(\mathrm{S} 1) \times(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F35	16-bit data increment	+1	D	$(\mathrm{D})+1 \rightarrow(\mathrm{D})$	3
F36	32-bit data increment	D+1	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3
F37	16-bit data decrement	-1	D	(D) - $1 \rightarrow$ (D)	3
F38	32-bit data decrement	D-1	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3
F39	32-bit data multiplication (result in two words)	D*D	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1) \times(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11

No.	Name	B oolean	Operand	Description	Steps
BCD arithmetic instructions					
F40	4-digit BCD data addition	B+	S, D	$(\mathrm{D})+(\mathrm{S}) \rightarrow(\mathrm{D})$	5
F41	8-digit BCD data addition	DB +	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F42	4-digit BCD data addition (Destination setting)	B+	S1, S2, D	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F43	8-digit BCD data addition (Destination setting)	DB +	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11
F45	4-digit BCD data subtraction	B -	S, D	(D) - (S) \rightarrow (D)	5
F46	8-digit BCD data subtraction	DB -	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F47	4-digit BCD data subtraction (Destination setting)	B -	S1, S2, D	$(\mathrm{S} 1)-(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F48	8-digit BCD data subtraction (Destination setting)	DB -	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11
F50	4-digit BCD data multiplication	B*	S1, S2, D	$(\mathrm{S} 1) \times(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7
F51	8-digit BCD data multiplication	DB*	S1, S2, D	$(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow(D+3, D+2, D+1, D)$	11
F52	4-digit BCD data division	B\%	S1, S2, D	$(\mathrm{S} 1) \div(\mathrm{S} 2) \rightarrow$ quotient (D) remainder (DT90015)	7
F53	8-digit BCD data division	DB\%	S1, S2, D	$(S 1+1, S 1) \div(S 2+1, S 2) \rightarrow \text { quotient }(D+1, D)$ remainder (DT90016, DT90015)	11
F55	4-digit BCD data increment	B +1	D	$(\mathrm{D})+1 \rightarrow(\mathrm{D})$	3
F56	8-digit BCD data increment	DB+1	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3
F57	4-digit BCD data decrement	B-1	D	(D) - $1 \rightarrow$ (D)	3
F58	8-digit BCD data decrement	DB-1	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3
Data comparison instructions					
F60	16-bit data comparison	CMP	S1, S2	(S1) $>($ S2 $) \rightarrow$ R 900A: on (S1) $=($ S2 $) \rightarrow$ R 900B: on (S1) $<$ (S2) \rightarrow R900C: on	5
F61	32-bit data comparison	DCMP	S1, S2	$\begin{aligned} & (S 1+1, S 1)>(S 2+1, \text { S2 }) \rightarrow \text { R } 900 \mathrm{~A}: \text { on } \\ & (S 1+1, \text { S1) }=(S 2+1, \text { S2 }) \rightarrow \text { R 900B: on } \\ & (S 1+1, \text { S1) }<(S 2+1, \text { S2 }) \rightarrow \text { R 900C: on } \end{aligned}$	9
F62	16-bit data band comparison	WIN	S1, S2, S3	$\begin{aligned} & \hline \text { (S1) >(S3) } \rightarrow \text { R 900A: on } \\ & (\text { S2 }) \leqq(S 1) \leqq(\text { S3 }) \rightarrow \text { R 900B: on } \\ & (\text { S1) < (S2) } \rightarrow \text { R 900C: on } \end{aligned}$	7

No.	Name	Boolean	Operand	Description	Steps
F63	32-bit data band comparison	DWIN	S1, S2, S3	$(S 1+1, S 1)>(S 3+1, S 3) \rightarrow R 900 A:$ on $(S 2+1, S 2) \leqq(S 1+1, S 1) \leqq(S 3+1, S 3) \rightarrow R 900 B:$ on $(S 1+1, S 1)<(S 2+1, S 2) \rightarrow R 900 C:$ on	13
F64	Block data comparison	BCMP	S1, S2, S3	Compares the two blocks beginning with "S2" and "S3" to see if they are equal.	7

Logic operation instructions

F65	16-bit data AND	WAN	S1, S2, D	$(\mathrm{S} 1) \wedge(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F66	16-bit data OR	WOR	S1, S2, D	$(\mathrm{S} 1) \vee(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7
F67	16-bit data exclusive OR	XOR	S1, S2, D	$\{(\mathrm{S} 1) \wedge(\mathrm{S2})\} \vee\{(\mathrm{SI}) \wedge(\mathrm{S} 2)\} \rightarrow(\mathrm{D})$	7
F68	16-bit data exclusive NOR	XNR	S1, S2, D	$\{(\mathrm{S} 1) \wedge(\mathrm{S} 2)\} \vee\{(\overline{\mathrm{S} 1}) \wedge(\overline{\mathrm{S} 2})\} \rightarrow(\mathrm{D})$	7
F69	Word (16-bit) data unite	WUNI	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$([\mathrm{S} 1] \wedge[\mathrm{S} 3]) \vee([\mathrm{S} 2] \wedge[\mathrm{S} 3]) \rightarrow(\mathrm{D})$ When (S3) is $\mathrm{HO},(\mathrm{S} 2) \rightarrow$ (D) When (S3) is HFFFF, (S1) \rightarrow (D)	9

Data conversion instructions

F70	Block check code calculation	BCC	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Creates the code for checking the data specified by "S2" and "S3" and stores it in "D". The calculation method is specified by " S 1 ".	9
F71	Hexadecimal data \rightarrow ASC II code	HEXA	S1, S2, D	Converts the hexadecimal data specified by " S 1 " and "S2" to ASCII code and stores it in " D ". Example: $\mathrm{HABCD} \rightarrow \mathrm{H} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \frac{44}{\mathrm{D}} \frac{43}{C}$	7
F72	ASCII code \rightarrow Hexadecimal data	AHEX	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to hexadecimal data and stores it in "D". Example: $\mathrm{H} \frac{44}{\mathrm{D}} \frac{43}{\mathrm{C}} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \rightarrow \mathrm{HCDAB}$	7
F73	$\begin{aligned} & \text { 4-digit BCD } \\ & \text { data } \rightarrow \text { ASCII } \\ & \text { code } \end{aligned}$	BCDA	S1, S2, D	Converts the four digits of BCD data specified by "S1" and "S2" to ASCII code and stores it in "D". Example: $\mathrm{H} 1234 \rightarrow \mathrm{H} \frac{32}{2} \frac{31}{1} \frac{34}{4} \frac{33}{3}$	7
F74	ASCII code \rightarrow 4-digit BCD data	ABCD	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D". Example: $\mathrm{H} \frac{34}{4} \frac{33}{3} \frac{32}{2} \frac{31}{1} \rightarrow \mathrm{H} 3412$	9
F75	16-bit binary data \rightarrow ASCII code	BINA	S1, S2, D	Converts the 16 bits of binary data specified by " S 1 " to ASCII code and stores it in " D " (area of " S 2 " bytes). Example: $\mathrm{K}-100 \rightarrow \mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \underline{2 D} \underline{20} \underline{20}$	7
F76	ASCII code \rightarrow 16-bit binary data	ABIN	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 16 bits of binary data and stores it in " D ". Example: $\mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \frac{2 \mathrm{D}}{-} \underline{20} \underline{20} \rightarrow \mathrm{~K}-100$	7
F77	32-bit binary data \rightarrow ASC II code	DBIA	S1, S2, D	Converts the 32 bits of binary data (S1+1, S1) to ASCII code and stores it in ($D+1, D$).	11
F78	ASCII code \rightarrow 32-bit binary data	DABI	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 32 bits of binary data and stores it in ($D+1, D$).	11

No.	Name	B oolean	Operand	Description	Steps
F80	16-bit binary data \rightarrow 4-digit BCD data	BCD	S, D	Converts the 16 bits of binary data specified by " S " to four digits of BCD data and stores it in " D ". Example: $\mathrm{K} 100 \rightarrow \mathrm{H} 100$	5
F81	4-digit BCD data \rightarrow 16-bit binary data	BIN	S, D	Converts the four digits of BCD data specified by "S" to 16 bits of binary data and stores it in " D ". Example: $\mathrm{H} 100 \rightarrow \mathrm{~K} 100$	5
F82	32-bit binary data \rightarrow 8-digit BCD data	DBCD	S, D	Converts the 32 bits of binary data specified by ($\mathrm{S}+1$, S) to eight digits of BCD data and stores it in ($D+1, D$).	7
F83	8-digit BCD data \rightarrow 32-bit binary data	DBIN	S, D	Converts the eight digits of BCD data specified by $(S+1, S)$ to 32 bits of binary data and stores it in ($D+1$, D).	7
F84	16-bit data invert	INV	D	Inverts each bit of data of "D".	3
F85	16-bit data complement of 2	NEG	D	Inverts each bit of data of " D " and adds 1 (inverts the sign).	3
F86	32-bit data complement of 2	DNEG	D	Inverts each bit of data of ($D+1, D$) and adds 1 (inverts the sign).	3
F87	16-bit data absolute	ABS	D	Gives the absolute value of the data of " D ".	3
F88	32-bit data absolute	DABS	D	Gives the absolute value of the data of ($D+1, D$).	3
F89	16-bit data sign extension	EXT	D	Extends the 16 bits of data in " D " to 32 bits in (D+1, D).	3
F90	Decode	DECO	S, n, D	Decodes part of the data of " S " and stores it in " D ". The part is specified by " n ".	7
F91	7-segment decode	SEGT	S, D	Converts the data of "S" for use in a 7-segment display and stores it in ($D+1, D$).	5
F92	Encode	ENCO	S, n, D	Encodes part of the data of " S " and stores it in " D ". The part is specified by " n ".	7
F93	16-bit data digit combine	UNIT	S, n, D	The least significant digit of each of the " n " words of data beginning at " S " are stored (united) in order in " D ".	7
F94	16-bit data digit distribute	DIST	S, n, D	Each of the digits of the data of " S " are stored in (distributed to) the least significant digits of the areas beginning at " D ".	7
F95	ASCII code conversion	ASC	S, D	Twelve characters of the character constants of " S " are converted to ASCII code and stored in " D " to " $\mathrm{D}+5$ ".	15
F96	16-bit table data search	SRC	S1, S2, S3	The data of " 51 " is searched for in the areas in the range "S2" to "S 3" and the result is stored in DT90037 and DT90038.	7
F97	32-bit table data search	DSRC	S1, S2, S3	The data of ($\mathrm{S} 1+1, \mathrm{~S} 1$) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result is stored in DT90037 and DT90038.	9

No.	Name	Boolean	Operand	Description	Steps
Data shift instructions					
F98	Data table shift-out and compress	CMPR	$\begin{aligned} & \text { D1, D2, } \\ & \text { D3 } \end{aligned}$	Transfer "D2" to "D3". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7
F99	Data table shift-in and compress	CMPW	S, D1, D2	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7
F100	Right shift of n bits in a 16-bit data	SHR	D, n	Shifts the " n " bits of " D " to the right.	5
F101	Left shift of n bits in a 16-bit data	SHL	D, n	Shifts the " n " bits of " D " to the left.	5
F102	Right shift of n bits in a 32-bit data	DSHR	D, n	Shifts the " n " bits of the 32-bit data area specified by ($D+1, D$) to the right.	5
F103	Left shift of n bits in a 32-bit data	DSHL	D, n	Shifts the " n " bits of the 32-bit data area specified by $(D+1, D)$ to the left.	5
F105	Right shift of one hexadecimal digit (4-bit)	BSR	D	Shifts the one digit of data of "D" to the right.	3
F106	Left shift of one hexadecimal digit (4-bit)	BSL	D	Shifts the one digit of data of "D" to the left.	3
F108	Right shift of multiple bits (n bits)	BITR	D1, D2, n	Shifts the " n " bits of data range by "D1" and "D2" to the right.	7
F109	Left shift of multiple bits (n bits)	BITL	D1, D2, n	Shifts the " n " bits of data range by "D1" and "D2" to the left.	7
F110	Right shift of one word (16-bit)	WSHR	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the right.	5
F111	Left shift of one word (16-bit)	WSHL	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the left.	5
F112	Right shift of one hexadecimal digit (4-bit)	WBSR	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the right.	5
F113	Left shift of one hexadecimal digit (4-bit)	WBSL	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the left.	5
Data buffer instructions					
F115	FIFO buffer define	FIFT	n, D	The " n " words beginning from " D " are defined in the buffer.	5
F116	Data read from FIFO buffer	FIFR	S, D	The oldest data beginning from " S " that was written to the buffer is read and stored in " D ".	5
F117	Data write into FIFO buffer	FIFW	S, D	The data of " S " is written to the buffer starting from " D ".	5

No.	Name	B oolean	Operand	Description	Steps
Basic function instructions					
F118	UP/DOWN counter	UDC	S, D	Counts up or down from the value preset in "S" and stores the elapsed value in "D".	5
F119	Left/right shift register	LRSR	D1, D2	Shifts one bit to the left or right with the area between "D1" and "D2" as the register.	5
Data rotation instructions					
F120	16-bit data right rotation	ROR	D, n	Rotate the " n " bits in data of " D " to the right.	5
F121	16-bit data left rotation	ROL	D, n	R otate the " n " bits in data of " D " to the left.	5
F122	16-bit data right rotation with carry flag data	RCR	D, n	Rotate the " n " bits in 17-bit area consisting of " D " plus the carry flag (R9009) data to the right.	5
F123	16-bit data left rotation with carry flag data	RCL	D, n	Rotate the " n " bits in 17-bit area consisting of " D " plus the carry flag (R9009) data to the left.	5
F125	32-bit data right rotation	DROR	D, n	R otate the number of bits specified by " n " of the double words data (32 bits) specified by ($D+1, \mathrm{D}$) to the right.	5
F126	32-bit data left rotation	DROL	D, n	R otate the number of bits specified by " n " of the double words data (32 bits) specified by $(D+1, D)$ to the left.	5
F127	32-bit data right rotation with carry flag data	DRCR	D, n	R otate the number of bits specified by " n " of the double words data (32 bits) specified by ($D+1, \mathrm{D}$) to the right together with carry flag (R9009) data.	5
F128	32-bit data left rotation with carry flag data	DRCL	D, n	R otate the number of bits specified by " n " of the double words data (32 bits) specified by ($D+1, D$) to the left together with carry flag (R9009) data.	5
B it manipulation instructions					
F130	16-bit data bit set	BTS	D, n	Set the value of bit position " n " of the data of " D " to 1.	5
F131	16-bit data bit reset	BTR	D, n	Set the value of bit position " n " of the data of " D " to 0 .	5
F132	16-bit data bit invert	BTI	D, n	Invert the value of bit position " n " of the data of " D ".	5
F133	16-bit data bit test	BTT	D, n	Test the value of bit position " n " of the data of " D " and output the result to R900B.	5
F135	Number of on (1) bits in 16-bit data	BCU	S, D	Store the number of on (1) bits in the data of "S" in "D".	5
F136	Number of on (1) bits in 32-bit data	DBCU	S, D	Store the number of on (1) bits in the data of (S+1, S) in " D ".	7
B asic function instruction					
F137	Auxiliary timer (16-bit)	STMR	S, D	Turn on the specified output and R 900D after set value "S" $\times 0.01 \mathrm{sec}$..	5

No.	Name	Boolean	Operand	Description	Steps
Special instructions					
F138	Hours, minutes and seconds data to seconds data	HMSS	S, D	Converts the hour, minute and second data of ($\mathrm{S}+1, \mathrm{~S}$) to seconds data, and the converted data is stored in (D+1, D).	5
F139	Seconds data to hours, minutes and seconds data	SHMS	S, D	Converts the seconds data of ($\mathrm{S}+1, \mathrm{~S}$) to hour, minute and second data, and the converted data is stored in ($D+1, D$).	5
F140	Carry flag set	STC	-	Turns on the carry flag (R9009).	1
F141	Carry flag reset	CLC	-	Turns off the carry flag (R9009).	1
F143	Partial I/O update	IORF	D1, D2	Updates the I/O from the number specified by "D1" to the number specified by "D2". Only possible for I/O numbers in a range of X0 to XF and $Y 0$ to $Y F$.	5
F147	Printout	PR	S, D	Converts the ASCII code data in the area starting with " S " for printing, and outputs it to the word external output relay WY specified by " D ".	5
F148	Self-diagnostic error set	ERR	$\begin{aligned} & \hline n \\ & \text { (n: K100 } \\ & \text { to K299) } \end{aligned}$	Stores the self-diagnostic error number " n " in DT90000 turns R 9000 on, and turns on the ERROR/ALARM LED.	3
F149	Message display	MSG	S	Displays the character constant of " S " in the connected programming tool.	13
F157	Time addition	CADD	S1, S2, D	The time after (S2+1, S2) elapses from the time of $(S 1+2, S 1+1, S 1)$ is stored in ($D+2, D+1, D)$.	9
F158	Time substruction	CSUB	S1, S2, D	The time that results from subtracting (S2+1, S2) from the time ($S 1+2, S 1+1, S 1$) is stored in ($D+2, D+1, D$).	9
F159	Serial data communication	MTRN	S, n, D	This is used to send data to or receive data from an external device through the specified COM., RS232C or RS 485 port.	7
BIN arithmetic instruction					
F160	Double word (32-bit) data square root	DSQR	S, D	$\sqrt{(S)} \rightarrow(\mathrm{D})$	7
High -speed counter and pulse output control instructions					
F0	High-speed counter and pulse output control	MV	$\begin{array}{\|l\|} \hline \text { S, } \\ \text { DT90052 } \end{array}$	Performs high-speed counter control according to the control code specified by " S ".	5
F1	Change and read of the elapsed value of high-speed counter	DMV	S, DT90044	Transfers (S $+1, \mathrm{~S}$) to high-speed counter elapsed value area (DT90045, DT90044). (* Note)	7
			$\begin{array}{\|l} \hline \text { DT90044, } \\ \text { D } \end{array}$	Transfers value in high-speed counter elapsed value area (DT90045, DT90044) to (D+1, D). (* Note)	7

Note

The elapsed value area varies depending on the channel being used.

No.	Name	B oolean	Operand	Description	Steps
F166	Target value much on (with channel specification)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of ($\mathrm{S}+1, \mathrm{~S}$).	11
F167	Target value much off (with channel specification)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of ($\mathrm{S}+1, \mathrm{~S}$).	11
F171	Pulse output (with channel specification) (Trapezoidal control and home return)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5
F172	Pulse output (with channel specification) (J OG operation)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5
F173	PWM output (with channel specification)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5
F174	Pulse output (with channel specification) (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5
B asic function instruction					
F183	Auxiliary timer (32-bit)	DSTM	S, D	Turn on the specified output and R 900D after set value " S " $\times 0.01 \mathrm{sec}$..	7
Data transfer instructions					
F190	Three 16-bit data move	MV3	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$(\mathrm{S} 1) \rightarrow(\mathrm{D}),(\mathrm{S} 2) \rightarrow(\mathrm{D}+1),(\mathrm{S} 3) \rightarrow(\mathrm{D}+2)$	10
F191	Three 32-bit data move	DMV3	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}),(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2), \\ & (\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow(\mathrm{D}+5, \mathrm{D}+4) \end{aligned}$	16
Logic operation instructions					
F215	32-bit data AND	DAND	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1) \wedge(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	12
F216	32-bit data OR	DOR	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1) \vee(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	12
F217	32-bit data XOR	DXOR	S1, S2, D	$\underset{\rightarrow(\mathrm{D}+1, \mathrm{D})}{\substack{ \\\rightarrow(\mathrm{S} 1+1, \mathrm{~S})}}$	12
F218	32-bit data XNR	DXNR	S1, S2, D	$\begin{aligned} & \{(\mathrm{S} 1+1, S 1) \wedge(\mathrm{S} 2+1, \mathrm{~S} 2)\} \vee\{(\mathrm{S} 1+1, \mathrm{~S} 1) \wedge(\mathrm{S} 2+1, \\ & \mathrm{S} 2)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	12

No.	Name	Boolean	Operand	Description	Steps
F219	Double word (32-bit) data unites	DUNI	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \{(S 1+1, S 1) \wedge(S 3+1, S 3)\} \vee\{(S 2+1, S 2) \wedge(S 3+1, S 3)\} \\ & \rightarrow(D+1, D) \end{aligned}$	16
Data conversion instructions					
F235	$\begin{aligned} & \text { 16-bit binary } \\ & \text { data } \rightarrow \\ & \text { Gray code } \\ & \text { conversion } \end{aligned}$	GRY	S, D	Converts the 16-bit binary data of " S " to gray codes, and the converted result is stored in the " D ".	6
F236	32-bit binary data \rightarrow Gray code conversion	DGRY	S, D	Converts the 32-bit binary data of (S +1, S) to gray code, and the converted result is stored in the ($D+1$, D).	8
F237	16-bit gray code \rightarrow binary data conversion	GBIN	S, D	Converts the gray codes of " S " to binary data, and the converted result is stored in the " D ".	6
F238	32-bit gray code \rightarrow binary data conversion	DGBIN	S, D	Converts the gray code of ($S+1, S$) to binary data, and the converted result is stored in the ($D+1, D$).	8
F240	Bit line to bit column conversion	COLM	S, n, D	The values of bits line 0 to 15 of " S " are stored in bit column " n " of (D to $D+15$).	8
F241	Bit column to bit line conversion	LINE	S, n, D	The values of bit column " n " of (S to $S+15$) are stored in bits line 0 to 15 of " D ".	8
Character strings instructions					
F257	Comparing character strings	SCMP	S1, S2	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10
F258	Character string coupling	SADD	S1, S2, D	These instructions couple one character string with another.	12
F259	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6
F260	Search for character string	SSRC	S1, S2, D	The specified character is searched in a character string.	10
F261	Retrieving data from character strings (right side)	RIGHT	S1, S2, D	These instructions retrieve a specified number of characters from the right side of the character string.	8
F262	Retrieving data from character strings (left side)	LEFT	S1, S2, D	These instructions retrieve a specified number of characters from the left side of the character string.	8
F263	Retrieving a character string from a character string	MIDR	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10
F264	Writing a character string to a character string	MIDW	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \mathrm{D}, \\ & \mathrm{n} \end{aligned}$	These instructions write a specified number of characters from a character string to a specified position in the character string.	12
F265	Replacing character strings	SREP	S, D, p, n	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12

No.	Name	B oolean	Operand	Description	Steps
Integer type data processing instructions					
F270	Maximum value (word data (16-bit))	MAX	S1, S2, D	Searches the maximum value in the word data table between the "S1" and "S2", and stores it in the " D ". The address relative to " S 1 " is stored in " $\mathrm{D}+1$ ".	8
F271	Maximum value (double word data (32-bit))	DMAX	S1, S2, D	Searches for the maximum value in the double word data table between the area selected with "S 1 " and "S2", and stores it in the "D". The address relative to " S 1 " is stored in " $\mathrm{D}+2$ ".	8
F272	Minimum value (word data (16-bit))	MIN	S1, S2, D	Searches for the minimum value in the word data table between the area selected with "S 1" and "S2", and stores it in the " D ". The address relative to " S 1 " is stored in " $D+1$ ".	8
F273	Minimum value (double word data (32-bit))	DMIN	S1, S2, D	Searches for the minimum value in the double word data table between the area selected with " S 1 " and " S 2 ", and stores it in the " D ". The address relative to " S 1 " is stored in " $D+2$ ".	8
F275	Total and mean values (word data (16-bit))	MEAN	S1, S2, D	The total value and the mean value of the word data with sign from the area selected with "S1" to the "S2" are stored in the "D".	8
F276	Total and mean values (double word data (32-bit))	DMEAN	S1, S2, D	The total value and the mean value of the double word data with sign from the area selected with "S 1" to "S2" are stored in the " D ".	8
F277	Sort (word data (16-bit))	SORT	S1, S2, S3	The word data with sign from the area specified by " S 1 " to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8
F278	$\begin{aligned} & \hline \text { Sort (double } \\ & \text { word data } \\ & \text { (32-bit)) } \end{aligned}$	DSORT	S1, S2, S3	The double word data with sign from the area specified by "S 1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8
F282	Scaling of 16-bit data	SCAL	S1, S2, D	The output value " Y " is found for the input value " X " by performing scaling for the given data table.	8
F283	Scaling of 32-bit data	DSCAL	S1, S2, D	The output value " γ " is found for the input value " X " by performing scaling for the given data table.	10
F285	16-bit data upper and lower limit control	LIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	When S1>S3, S1 \rightarrow D When S2 < S 3, S2 \rightarrow D When $\mathrm{S} 1 \leqq \mathrm{~S} 3 \leqq \mathrm{~S} 2, \mathrm{~S} 3 \rightarrow \mathrm{D}$	10
F286	32-bit data upper and lower limit control	DLIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 1+1, S 1)>(S 3+1, S 3),(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 2+1, S 2)<(S 3+1, S 3),(S 2+1, S 2) \rightarrow(D+1, D) \\ & \begin{array}{l} \text { When }(S 1+1, S 1) \leqq(S 3+1, S 3) \leqq(S 2+1, S 2),(S 3+1, S 3) \\ \rightarrow(D+1, D) \end{array} \end{aligned}$	16
F287	16-bit data deadband control	BAND	$\begin{array}{\|l} \text { S1, S2, } \\ \text { S3, D } \end{array}$	When S1> S3, S3-S1 \rightarrow D When S2 < S3, S3-S2 \rightarrow D When $\mathrm{S} 1 \leqq \mathrm{~S} 3 \leqq \mathrm{~S} 2,0 \rightarrow \mathrm{D}$	10
F288	32-bit data deadband control	DBAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 1+1, S 1)>(S 3+1, S 3), \\ & (S 3+1, S 3)-(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 2+1, S 2)<(S 3+1, S 3), \\ & (S 3+1, S 3)-(S 2+1, S 2) \rightarrow(D+1, D) \\ & \text { When }(S 1+1, S 1) \leqq(S 3+1, S 3) \leqq(S 2+1, S 2), \\ & 0 \rightarrow(D+1, D) \end{aligned}$	16

No.	Name	Boolean	Operand	Description	Steps
Integer type data processing instructions					
F289	16-bit data zone control	ZONE	$\begin{array}{\|l} \text { S1, S2, } \\ \text { S3, D } \end{array}$	When S3 $<0, \mathrm{~S} 3+\mathrm{S} 1 \rightarrow \mathrm{D}$ When $\mathrm{S} 3=0,0 \rightarrow \mathrm{D}$ When S3>0, S3 +S2 \rightarrow D	10
F290	32-bit data zone control	DZONE	$\begin{array}{\|l} \hline \text { S1, S2, } \\ \text { S3, D } \end{array}$	```When (S3+1, S3) <0, \((\mathrm{S} 3+1, \mathrm{~S} 3)+(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})\) When \((S 3+1, S 3)=0,0 \rightarrow(D+1, D)\) When \((S 3+1, S 3)>0\), \((\mathrm{S} 3+1, \mathrm{~S} 3)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})\)```	16
Floating-point type real number operation instructions					
F309	Floating-point type data move	FMV	S, D	$(S+1, S) \rightarrow(D+1, D)$	8
F310	Floating-point type data addition	F+	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14
F311	Floating-point type data subtraction	F-	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14
F312	Floating-point type data multiplication	F*	S1, S2, D	$(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14
F313	Floating-point type data division	F\%	S1, S2, D	$(S 1+1, S 1) \div(S 2+1, S 2) \rightarrow(D+1, D)$	14
F314	Floating-point type data sine operation	SIN	S, D	SIN (S +1, S) \rightarrow ($\mathrm{D}+1, \mathrm{D}$)	10
F315	Floating-point type data cosine operation	COS	S, D	$\operatorname{COS}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10
F316	Floating-point type datatangent operation	TAN	S, D	TAN (S +1, S) \rightarrow ($\mathrm{D}+1, \mathrm{D}$)	10
F317	Floating-point type data arcsine operation	ASIN	S, D	$\mathrm{SIN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10
F318	Floating-point type data arccosine operation	ACOS	S, D	$\operatorname{COS}^{-1}(S+1, S) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10
F319	Floating-point type data arctangent operation	ATAN	S, D	$\operatorname{TAN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10
F320	Floating-point type data natural logarithm	LN	S, D	LN (S +1, S) \rightarrow ($\mathrm{D}+1, \mathrm{D}$)	10
F321	Floating-point type data exponent	EXP	S, D	$\operatorname{EXP}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10

No.	Name	B oolean	Operand	Description	Steps
F322	Floating-point type data logarithm	LOG	S, D	LOG (S +1, S) \rightarrow ($\mathrm{D}+1, \mathrm{D}$)	10
F323	Floating-point type data power	PWR	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1) \wedge(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14
F324	Floating-point type data square root	FSQR	S, D	$\sqrt{(S+1, S)} \rightarrow(D+1, D)$	10
F325	16-bit integer data to floating-point type data conversion	FLT	S, D	Converts the 16 -bit integer data with sign specified by " S " to real number data, and the converted data is stored in " D ".	6
F326	32-bit integer data to floating-point type data conversion	DFLT	S, D	Converts the 32-bit integer data with sign specified by $(\mathrm{S}+1, \mathrm{~S})$ to real number data, and the converted data is stored in ($D+1, D$).	8
F327	Floating-point type data to 16-bit integer conversion (the largest integer not exceeding the floatingpoint type data)	INT	S, D	Converts real number data specified by $(S+1, S)$ to the 16 -bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in " D ".	8
F328	Floatingpoint type data to 32-bit integer conversion (the largest integer not exceeding the floatingpoint type data)	DINT	S, D	Converts real number data specified by $(S+1, S)$ to the 32-bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in (D+1, D).	8
F329	Floatingpoint type data to 16 -bit integer conversion (rounding the first decimal point down to integer)	FIX	S, D	Converts real number data specified by $(S+1, S)$ to the 16 -bit integer data with sign (rounding the first decimal point down), and the converted data is stored in " D ".	8
F330	Floatingpoint type data to 32-bit integer conversion (rounding the first decimal point down to integer)	DFIX	S, D	Converts real number data specified by ($\mathrm{S}+1, \mathrm{~S}$) to the 32 -bit integer data with sign (rounding the first decimal point down), and the converted data is stored in ($D+1$, D).	8

No.	Name	Boolean	Operand	Description	Steps
F331	Floating-point type data to 16-bit integer conversion (rounding the first decimal point off to integer)	ROFF	S, D	Converts real number data specified by (S +1, S) to the 16-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in "D".	8
F332	Floating-point type data to 32-bit integer conversion (rounding the first decimal point off to integer)	DROFF	S, D	Converts real number data specified by (S +1, S) to the 32-bit integer data with sign(rounding the first decimal point off), and the converted data is stored in (D+1, D).	8
F333	Floating-point type data rounding the first decimal point down	FINT	S, D	The decimal part of the real number data specified in (S+1, S) is rounded down, and the result is stored in (D+1, D).	8
F334	Floating-point type data rounding the first decimal point off	FRINT	S, D	The decimal part of the real number data stored in (S +1, S) is rounded off, and the result is stored in (D +1, D).	8
F335	Floating-point type data sign changes	F+/-	S, D	The real number data stored in (S +1, S) is changed the sign, and the result is stored in (D +1, D).	8
F336	Floating-point type data absolute	FABS	S, D	Takes the absolute value of real number data specified by (S +1, S), and the result (absolute value) is stored in (D+1, D).	8
F337	Floating-point type data degree \rightarrow radian	RAD	S, D	The data in degrees of an angle specified in (S +1, S) is converted to radians (real number data), and the result is stored in (D+1, D).	8
F338	Floating-point type data radian \rightarrow degree	DEG	S, D	The angle data in radians (real number data) specified in (S+1, S) is converted to angle data in degrees, and the result is stored in (D+1, D).	8

No.	Name	Boolean	Operand	Description	Steps
Floating-point type real number data processing instructions					
F345	Floating-point type data compare	FCMP	S1, S2		10
F346	Floating-point type data band compare	FWIN	S1, S2, S3		14
F347	Floating-point type data upper and lower limit control	FLIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 1+1, S 1)>(S 3+1, S 3),(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 2+1, S 2)<(S 3+1, S 3),(S 2+1, S 2) \rightarrow(D+1, D) \\ & \text { When }(S 1+1, S 1) \leqq(S 3+1, S 3) \leqq(S 2+1, S 2), \\ & (S 3+1, S 3) \rightarrow(D+1, D) \end{aligned}$	18
F348	Floating-point type data deadband control	FBAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 1+1, S 1)>(S 3+1, S 3), \\ & (S 3+1, S 3)-(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 2+1, S 2)<(S 3+1, S 3), \\ & (S 3+1, S 3)-(S 2+1, S 2) \rightarrow(D+1, D) \\ & \text { When }(S 1+1, S 1) \leqq(S 3+1, S 3) \leqq(S 2+1, S 2), \\ & 0.0 \rightarrow(D+1, D) \end{aligned}$	18
F349	Floatingpoint type data zone control	FZONE	$\begin{array}{\|l} \hline \text { S1, S2, } \\ \text { S3, D } \end{array}$	```When (S3+1, S3) <0.0, \((\mathrm{S} 3+1, \mathrm{~S} 3)+(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})\) When \((S 3+1, S 3)=0.0,0.0 \rightarrow(D+1, D)\) When \((S 3+1, S 3)>0.0\), \((S 3+1, S 3)+(S 2+1, S 2) \rightarrow(D+1, D)\)```	18
Process control instruction					
F355	PID processing	PID	S	PID processing is performed depending on the control value (mode and parameter) specified by (S to $\mathrm{S}+2$) and ($S+4$ to $S+10$), and the result is stored in the $(S+3)$.	4
Data compare instructions					
F373	16-bit data revision detection	DTR	S, D	If the data in the 16-bit area specified by " S " has changed since the previous execution, internal relay R 9009 (carry flag) will turn on. "D" is used to store the data of the previous execution.	6
F374	32-bit data revision detection	DDTR	S, D	If the data in the 32 -bit area specified by $(S+1, S)$ has changed since the previous execution, internal relay R 9009 (carry flag) will turn on. $(D+1, D)$ is used to store the data of the previous execution.	6

13.9 ME WTOCOL-COM Communication Commands

Table of ME WTOCOL - COM commands

Command name	C ode	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on and off status of contacts. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contacts on and off. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MC or MD".
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16- pointon and off pattern.
Preset data area (fill command)	RD	Writes the same contents to the data area of a specified range.
Read system register	RR	
Write system register	Reads the contents of a system register.	
Read the status of PLC	Specifies the contents of a system register.	
Remote control	Reads the specifications of the programmable controller and error codes if an error occurs.	
Abort	Switches the operation mode of the programmable controller.	

13.10 Hexadecimal/Binary/BCD

Decimal	Hexadecimal	Binary data	BCD data (Binary Coded Decimal)
0	0000	0000000000000000	0000000000000000
1	0001	0000000000000001	0000000000000001
2	0002	0000000000000010	0000000000000010
3	0003	0000000000000011	0000000000000011
4	0004	0000000000000100	0000000000000100
5	0005	0000000000000101	0000000000000101
6	0006	0000000000000110	0000000000000110
7	0007	0000000000000111	0000000000000111
8	0008	0000000000001000	0000000000001000
9	0009	0000000000001001	0000000000001001
10	000A	0000000000001010	0000000000010000
11	000B	0000000000001011	0000000000010001
12	000C	0000000000001100	0000000000010010
13	000D	0000000000001101	0000000000010011
14	000E	0000000000001110	0000000000010100
15	000F	0000000000001111	0000000000010101
16	0010	0000000000010000	0000000000010110
17	0011	0000000000010001	0000000000010111
18	0012	0000000000010010	0000000000011000
19	0013	0000000000010011	0000000000011001
20	0014	0000000000010100	0000000000100000
21	0015	0000000000010101	0000000000100001
22	0016	0000000000010110	0000000000100010
23	0017	0000000000010111	0000000000100011
24	0018	0000000000011000	0000000000100100
25	0019	0000000000011001	0000000000100101
26	001A	0000000000011010	0000000000100110
27	001 B	0000000000011011	0000000000100111
28	001 C	0000000000011100	0000000000101000
29	001 D	0000000000011101	0000000000101001
30	001 E	0000000000011110	0000000000110000
31	$001 F$	0000000000011111	0000000000110001
D	-	-	-
-	-	-	-
¢ 6	${ }_{0}^{\text {0 }}$ \%	$00000000{ }^{\circ} 00111111$	$00000000{ }^{\text {D }} 01100011$
${ }_{0}$	-	-	-
-	-	-	-
255	${ }_{0}^{\text {O }}$ FF	00000011111111	0000001001010101
-	-		
-	-	-	-
9999	${ }_{27}{ }^{\text {D }}$	$00100111{ }^{\text {D }} 00001111$	1001100110011001

13.11 ASC II Codes

13.12 Dimensions

13.12.1 Control Unit

FPG - C32T, FPG - C 32T2

FPG-C24R2

13.12.2 Expansion Unit

FPG -XY64D2T

FP Σ

Index

Numbers

1:N communication, 9-31

A

Absolute <absolute value control>, 6-23
Absolute value positioning operation, 6-48
Addition and subtraction input mode, 6-11

Addition input mode, 6-10
Analog potentiometer, 11-3
Attachment of communication cassette, 7-10

B

Backup battery, 5-24
Basic instructions, 13-44
Battery error alarm, 5-25
BCD data, 13-67
Booting time, 6-9

C

Capacitive loads, 5-15
Changing the communication mode of COM. Port, 9-37
Clock/calendar Function, 11-4
Command, 8-5
Command message, 8-5
Commands, 8-8
Communication Cassette, 7-3
Communication cassette, 1-6, 2-6,
7-6
Communication specifications of communication cassette, 7-8

Communication status LEDs, 2-4
Computer link, 7-3, 8-3

Computer link ($1: N$ communication), 8-18
Connection example of PLC link, 10-18
Connection example with external device, 9-22

Connection example with external devices, 9-16

Constants, 13-12
Control mode, 6-23
Controllable I/O points, 1-7,1-8
CW/CCW output method, 6-21

D

Data transmission, 9-4
Data transmission to external device, 9-8

Direction distinction mode, 6-11

E

Elapsed value change and read instruction (F1), 6-13

Elapsed value write and read instruction (F1), 6-41

Emergency stop circuit, 5-22
Error cords, 13-42

F

F159 (MTRN) instruction, 9-5
Features, 1-3
Flat type mounting plate, 5-8
FPsigma control unit, 1-6

G

General specifications, 13-3
General-purpose serial communication, 7-4, 9-3
Grounding, 5-11,5-22

H

High-level instructions, 13-51
High-speed counter, 13-7
High-speed counter control instruction (F0), 6-13
High-speed counter function, 6-3, 6-10
High-speed counter function specifica-
tions, 6-5
Home return, 6-23
Home return operation, 6-50
Home return operation modes, 6-28

I
I/O allocation, 4-3, 6-12, 6-22
I/O no. allocation, 13-10
Incremental <relative value control>, 6-23
Inductive loads, 5-15
Input modes, 6-10
Input specifications, 2-7
Input wiring, 5-12
Installation, 5-3
Installation environment, 5-3
Installation method, 5-6
Installation space, 5-5
Instructions, 13-44
Interlock circuit, 5-22
Internal circuit diagram, 2-8, 2-10, 2-11

JOG operation, 6-23, 6-54

L
LED-equipped lead switch, 5-13
LED-equipped limit switch, 5-14
Lifetime of backup battery, 5-26
link area, 10-13
Link area allocation, 10-10

M

Memory areas, 13-12
Min. input pulse width, 6-12
Momentary power failures, 5-23

0

One input mode, 6-11
Operation on error, 12-4
Optional mounting plate, 5-7
Output specifications, 2-9
Output wiring, 5-15

P

Password function, 12-10
Performance specifications, 13-5
Photoelectric sensor, 5-12
PLC link, 7-5, 10-3
PLC link function specification, 13-9
PLC link function specifications, 7-9
Positioning control instruction (F171), 6-24, 6-26
Programming tools, 1-9
Protect error, 12-10
Proximity sensor, 5-12
Pulse output, 13-7

Pulse output control instruction (F0), 6-41
Pulse output function, 6-3, 6-20
Pulse output function specifications, 6-6
Pulse output instruction (F172), 6-29
Pulse output method, 6-21
Pulse/Sign output method, 6-21
PWM output function, 6-3, 6-56
PWM output instruction, 6-56
PWM output specifications, 13-7

R

Receiving data from external device, 9-12

Relative value positioning operation, 6-44, 6-46
Relays, 13-12
Removal method, 5-6
Response, 8-5
Response message, 8-6
Restrictions on unit combinations, 1-7
RUN/PROG. mode switch, 2-4

S

Safety measures, 5-22
Self-diagnostic error, 12-5, 13-43
Self-diagnostic function, 12-3
Serial communication specifications (1:1 communication), 7-8, 13-8
Serial communication specifications ($1: \mathrm{N}$ communication), 7-8, 13-8
Short-circuit protective circuit, 5-15
Slim 30 type mounting plate, 5-7
Software environment, 1-9
Special internal relays, 13-21
Specifications, 13-3
Start up sequence, 5-22
Status indicator LEDs, 2-4, 12-3

Subtraction input mode, 6-10
Suitable cable, 1-9
Suitable wire, 7-11
Syntax check error, 13-42
System registers, 13-14
System watchdog timer, 12-7

T

Target value match off instruction (F167), 6-15
Target value match on instruction (F166), 6-15

Terminal layout diagram, 2-12
Terminal station, 8-22
Tool port, 2-6
Transmission error, 12-11
Troubleshooting, 12-5
Two-phase input mode, 6-11
Two-wire type sensor, 5-13
Type I home return, 6-28
Type II home return, 6-28

U

Unit (station) number setting switch, 2-5 Unit no., 10-6
Unit types, 1-6

W

Weight, 13-4
Wiring of communication cassette, 7-11
Wiring of MIL connector type, 5-17
Wiring of power supply, 5-9

Record of changes

Manual No.	Date	Description of changes
ARCT1F333E/ ACG-M333E ARCT1F333E-1/ ACG-M333E-1	Sept. 2001 Feb. 2002	First edition 2nd edition SAdditions: Control units - FPG -C32T2 - FPG -C24R2 Expansion unit - FPG -XY64D2T Tool software - FPWIN Pro Ver. 4

GLOBAL NETWORK

Please contact

Matsushita Electric Works, Ltd.
Automation Controls Company
H Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, J apan
HTelephone: J apan (81) Osaka (06) 6908-1050
HFacsimile: J apan (81) Osaka (06) 6908-5781
http://www.nais-e.com/

[^0]: T. This manual was created using Adobe Acrobat.

 Adobe, the Adobe logo, and Acrobat are trademarks
 Adobe of Adobe Systems Incorporated.

[^1]: For X2 and X5 to $X 7$,
 For X8 to XF,
 R1: $5.6 \mathrm{k} \Omega, \mathrm{R} 2: 1 \mathrm{k} \Omega$
 R1: $6.8 \mathrm{k} \Omega, \mathrm{R} 2: 820 \Omega$

[^2]: * Current position S = (0.0)
 (DT90044, DT90045) = 0, (DT90200, DT90201) $=0$

[^3]: Figure 131: FP Σ 2-channel RS232C type communication cassette

[^4]: Figure 167: FP Σ Reception buffer

