Right choice for ultimate yield

LSIS strives to maximize customers' profit in gratitude of choosing us for your partner.

Programmable Logic Controller

Analog Input Module

XGT Series

User's Manual

XGF-AD8A

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- •Keep this manual within easy reach for quick reference.

http://www.lsis.com

Before using the product ...

For your safety and effective operation, please read the safety instructions thoroughly before using the product.

- Safety Instructions should always be observed in order to prevent accident or risk with the safe and proper use the product.
- ► Instructions are divided into "Warning" and "Caution", and the meaning of the terms is as follows.

Warning This symbol indicates the possibility of serious injury or death if some applicable instruction is violated

This symbol indicates the possibility of severe or slight injury, and property damages if some applicable instruction is violated

Moreover, even classified events under its caution category may develop into serious accidents relying on situations. Therefore we strongly advise users to observe all precautions properly just like warnings.

The marks displayed on the product and in the user's manual have the

following meanings.

2 Be careful! Danger may be expected.

4 Be careful! Electric shock may occur.

The user's manual even after read shall be kept available and accessible to any user of the product.

Safety Instructions for design process

- Please install a protection circuit on the exterior of PLC so that the whole system may operate safely regardless of failures from external power or PLC. Any abnormal output or operation from PLC may cause serious problems to safety in whole system.
 - Install protection units on the exterior of PLC like an interlock circuit that deals with opposite operations such as emergency stop, protection circuit, and forward/reverse rotation or install an interlock circuit that deals with high/low limit under its position controls.
 - If any system error (watch-dog timer error, module installation error, etc.) is detected during
 CPU operation in PLC, all output signals are designed to be turned off and stopped for safety.
 However, there are cases when output signals remain active due to device failures in Relay and
 TR which can't be detected. Thus, you are recommended to install an addition circuit to monitor
 the output status for those critical outputs which may cause significant problems.
- Never overload more than rated current of output module nor allow to have a short circuit.
 Over current for a long period time maycause a fire .
- Never let the external power of the output circuit to be on earlier than PLC power, which may cause accidents from abnormal output oroperation.
- Please install interlock circuits in the sequence program for safe operations in the system when exchange data with PLC or modify operation modes using a computer or other external equipments Read specific instructions thoroughly when conducting control operations with PLC.

Safety Instructions for design process

I/O signal or communication line shall be wired at least 100mm away from a high-voltage

cable or power line. Fail to follow this

Safety Instructions on installation process

- Use PLC only in the environment specified in PLC manual or general standard of data sheet. If not, electric shock, fire, abnormal operation of the product may be caused.
- Before install or remove the module, be sure PLC power is off. If not, electric shock or damage on the product may be caused.
- Be sure that every module is securely attached after adding a module or an extension connector. If the product is installed loosely or incorrectly, abnormal operation, error or dropping may be caused. In addition, contact failures under poor cable installation will be causing malfunctions as well.
- Be sure that screws get tighten securely under vibrating environments. Fail to do so will put the product under direct vibrations which will cause electric shock, fire and abnormal operation.
- Do not come in contact with conducting parts in each module, which may cause electric shock, malfunctions or abnormal operation.

Safety Instructions for wiring process

- Prior to wiring works, make sure that every power is turned off. If not, electric shock or damage on the product may be caused.
- After wiring process is done, make sure that terminal covers are installed properly before

its use. Fail to install the cover may cause electric shocks.

- Check rated voltages and terminal arrangements in each product prior to its wiring process. Applying incorrect voltages other than rated voltages and misarrangement among terminals may cause fire or malfunctions.
- Secure terminal screws tightly applying with specified torque. If the screws get loose, short circuit, fire or abnormal operation may be caused. Securing screws too tightly will cause damages to the module or malfunctions, short circuit, and dropping.
- Be sure to earth to the ground using Class 3 wires for FG terminals which is exclusively used for PLC. If the terminals not grounded correctly, abnormal operation or electric shock may be caused.
- Don't let any foreign materials such as wiring waste inside the module while wiring, which may cause fire, damage on the product or abnormal operation.
- Make sure that pressed terminals get tighten following the specified torque. External connector type shall be pressed or soldered using proper equipments.

Safety Instructions for test-operation and maintenance

- > Don't touch the terminal when powered. Electric shock or abnormal operation may occur.
- Prior to cleaning or tightening the terminal screws, let all the external power off including
 PLC power. If not, electric shock or abnormal operation may occur.
- Don't let the battery recharged, disassembled, heated, short or soldered. Heat, explosion or ignition may cause injuries or fire.
- Do not make modifications or disassemble each module. Fire, electric shock or abnormal operation may occur.
- Prior to installing or disassembling the module, let all the external power off including
 PLC power. If not, electric shock or abnormal operation may occur.
- Keep any wireless equipment such as walkie-talkie or cell phones at least 30cm away from PLC. If not, abnormal operation may be caused.
- When making a modification on programs or using run to modify functions under PLC operations, read and comprehend all contents in the manual fully. Mismanagement will cause damages to products and accidents.
- Avoid any physical impact to the battery and prevent it from dropping as well. Damages to battery may cause leakage from its fluid. When battery was dropped or exposed under strong impact, never reuse the battery again. Moreover skilled workers are needed when exchanging batteries.

Safety Instructions for waste disposal

• Product or battery waste shall be processed as industrial waste. The waste may discharge

toxic materials or explode itself.

Revision History

Γ

Version	Date	Remark	Page
V 1.0	'09. 9	1. First Edition	-
V 1.1	ʻ14. 1	1. View the variables/comments contents	4-18
		2. Correct typing errors	Ch2, Ch5, Ch6
		3. Correct Channel address error about setting output data range	Ch7

The number of User's manual is indicated right part of the back cover.
LS Industrial Systems Co., Ltd 2009 All Rights Reserved.

Thank you for purchasing PLC of LS Industrial System Co.,Ltd.

Before use, make sure to carefully read and understand the User's Manual about the functions, performances, installation and programming of the product you purchased in order for correct use and importantly, let the end user and maintenance administrator to be provided with the User's Manual.

The User's Manual describes the product. If necessary, you may refer to the following description and order accordingly. In addition, you may connect our website (<u>http://www.lsis.com/</u>) and download the information as a PDF file.

Title	Description		
XG5000 User's Manual (for XGK, XGB)	XG5000 software user manual describing online function such as programming, print, monitoring, debugging by using XGK, XGB CPU		
XG5000 User's Manual (for XGI, XGR)	XG5000 software user manual describing online function such as programming, print, monitoring, debugging by using XGI, XGR CPU		
XGK/XGB Instructions & Programming User's Manual	User's manual for programming to explain how to use instructions that are used PLC system with XGK, XGB CPU.		
XGI/XGR/XEC Instructions & Programming User's Manual	User's manual for programming to explain how to use instructions that are used PLC system with XGI, XGR, XEC CPU.		
XGK CPU User's Manual (XGK-CPUA/CPUE/CPUH/CPUS/CPUU)	XGK-CPUA/CPUE/CPUH/CPUS/CPUU user manual describing about XGK CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard		
XGI CPU User's Manual (XGI-CPUU/CPUH/CPUS)	XGI-CPUU/CPUH/CPUS user manual describing about XGI CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard		
XGR redundant series User's Manual	XGR- CPUH/F, CPUH/T user manual describing about XGR CPU module, power module, extension drive, base, IO module, specification of extension cable and system configuration, EMC standard		

Relevant User's Manuals

Current XGF-AD16A manual is written based on the following version.

Related OS version list

Product name	OS version
XGK-CPUH, CPUS, CPUA, CPUE, CPUU	V2.1
XGI-CPUU, CPUH, CPUS	V2.2
XGR-CPUH/F, CPUH/T	V1.3
XG5000(XG-PD)	V2.41

LS is | 1

Chapter 1 Overview	1-1 ~ 1-4
1.1 Characteristics	1-1
1.2 Glossary	1-2
1.2.1 Analog Quantity - A	
1.2.2 Digital Quantity - D	
1.2.3 The Characteristics of Analog-Digital Conversion	1-3
1.3 New Functions	1-4
Chapter 2 Specifications	2-1 ~ 2-20
2.1 General Specifications	2-1
2.2 Performance Specifications	
2.3 Description of the Parts	
2.4 Characteristics of Input/Output Conversion	
2.4.1 Input/Output Characteristics of XGF-AD8A	
2.4.2 Precision	2-13
2.5 Functions of the Analog Input Module	
2.5.1 Sampling Processing	
2.5.2 Average Processing	
2.5.3 Detection of Input Disconnection	2-17
2.5.4 Hold last value (Dedicated for current input)	
2.5.5 Alarm function	2-19
Chapter 3 Installation and Wiring	3-1 ~ 3-4
3.1 Installation	3-1
3.1.1 Installation Environment	
3.1.2 Precautions in Handling	
3.2 Wiring	
3.2.1 Precautions in Wiring	
3.2.2 An Example of Wiring	

LSIS | 1

Chapter 4 Opera	ting Setting		4-1	~ 4-	-17
-----------------	--------------	--	-----	------	-----

The Operating Setting Flowchart	4-1
Operating Parameter Setting	4-2
I.2.1 Setting Items	4-2
I.2.2 How to Use [I/O Parameter]	4-2
Functions of the Special Module Monitor	4-6
Precautions	4-7
How to Use the Special Module Monitor	4-8
1.5.1 Starting [Special module monitoring]	4-8
1.5.2 How to Use [Special module monitoring]	4-8
U Automatic Registration of U Device	4-12
I.6.1 Automatic Registration of U Device	4-12
1.6.2 Saving Variables	4-14
1.6.3 Viewing Variables in the Program	4-15

Chapter 5 Configuration and Functions of the Internal Memory (XGK)...... 5-1 ~ 5-11

5.1 The Configuration of the Internal Memory 5-1
5.1.1 Input and Output Areas of A/D Conversion Data 5-1
5.1.2 Operating Parameter Setting Range 5-3
5.2 A/D Conversion Data Input/Output Ranges
5.2.1 Module READY/ERROR Flag 5-4
5.2.2 Operating channel flag
5.2.3 Digital output value
5.2.4 Disconnection detection flag
5.2.5 Error clear request flag
5.3 Operating Parameter Setting Ranges
5.3.1 Designation of the channel to use
5.3.2 Output Voltage/Current Ranges
5.3.3 Output Data Ranges
5.3.4 Average Processing
5.3.5 Average Value
5.3.6 Error Code
5.3.7 Hold last value

Contents

Chapter 6 Programming (XGK)	
6.1 The Basic Program	6-1
6.1.1 An Example of a Program That Uses [I/O Parameter]	
6.1.2 An Example of a Program That Uses the PUT/GET Command	6-2
6.2 Application Program (XGK)	6-3
6.2.1 The Program Distinguishing A/D Conversion Values	6-3
6.2.2 The Program That Outputs the Error Code of the Analog Input Module through BCD Display	y 6-6
Chapter 7 Configuration and Functions of Global Variables (for XGI/XGR)	7-1 ~ 7-17
7.1 Global Variables (Data Areas)	7-1
7.1.1 Configuration of A/D Conversion Data Input and Output Area	
7.1.2 How to Use Global Variables	
7.2 PUT/GET Function Block Area (Parameter Area)	
7.2.1 PUT/GET Function Block Area (Parameter Area)	7-10
7.2.2 PUT/GET Commands	
7.2.3 Examples of Use of PUT/GET Commands	7-13
Chapter 8 Programming (XGI, XGR)	8-1 ~ 8-9
8.1 The Basic Program (XGI/XGR)	8-1
8.1.1 An Example of a Program That Uses [I/O Parameter]	
8.1.2 An Example of a Program That Uses the PUT/GET Command	
8.2 Application Program (XGI/XGR)	8-5
8.2.1 The Program Distinguishing A/D Conversion Values	8-5
8.2.2 The Program That Outputs the Error Code of the Analog Input Module through BCD Display	y 8-8
Chapter 9 Failure Check	9-1 ~ 9-5
9.1 ETUL OUR	
9.2 1 RIUIE OIEUR	
9.2.3 CPU Module Cannot Read A/D Conversion Values	
9.2.4 The Analog Input Value Inconsistent with Digital Output Value	

LSis | 3

Contents

9.2.5 Hardware Failure of the Analog Input Module	ł
9.2.6 Check of Analog Input Module Status by XG5000 System Monitor	1
Appendix1 Glossary A1-1~A1-2	2
Appendix 1 Glossary A1-	1
Appendix2 Dimension A2-1	ĺ
Appendix2 Dimension	1

Chapter 1 Overview

This manual describes the specifications, handling, and programming of the XGF-AD8A type analog/digital conversion module, which is used in combination with the CPU module of the XGT PLC series. XGF-AD8A is hereafter referred to as the analog input module. The analog input module is for converting the analog signals (voltage or current input) from a PLC external device into digital values of the signed 14 bit binary data.

1.1 Characteristics

- Hybrid input processing
 8 channel current/voltage input can be processed in a single module.
- High speed conversion
 Conversion can be conducted at a high speed of 250/µs/channel.
- 3) High precision The conversion precision is $\pm 0.2\%$ (surrounding temperature $25\degree C \pm 5\degree C$).
- 4) High resolution of 1/16000 The resolution of the digital values can be set at 1/16000.
- 5) Operating parameter setting and monitoring by GUI(Graphical User Interface)

The operating setting, which was conducted by commands, can be manipulated by using [I/O parameter setting] with improved user interface, which increased the user's convenience. You can reduce the sequence program by using I/O parameter setting. Furthermore, you can easily monitor the A/D converted values using [Special module monitor] function.

6) A variety of digital output data formats

4 types of digital output data format are supported. The output type of the digital data can be defined as follows.

- Unsigned value: 0 ~ 16000
- Signed value: -8000 ~ 8000
- > Precise value: see Chapter 2.2.
- Percentile value: 0 ~ 10000
- 7) Short circuit detection

A short circuit of the input circuit can be detected when the analog input sign range of 4 \sim 20 mA, 1 \sim 5 V is used.

1.2 Glossary

[Fig.1.1] Analog quantity

1.2.1 Analog Quantity - A

Analog quantity refers to when a physical value is continuous. As analog values are unbroken, there is always a median value. Physical properties in general such as voltage, current, velocity, pressure and flow fall into the analog quantity. For example, the temperature is seamless over time as shown in Fig. 1.1 Because the temperature cannot be input directly into the Analog input module, it needs to be relayed by a transducer that converts input signals of analog properties into electrical signals.

1.2.2 Digital Quantity - D

The data consisting of integers or the physical properties in figures are referred to as digital properties (Fig. 1.3). The digital properties are the electronic method of creating, storing and processing the data in only 0 and 1. The data transmitted or stored by digital technology is expressed in a string of 0 and 1. For example, the on and off signals can be expressed in 0 and 1 digital values, and the BCD or binary values are also digital values.

[Fig. 1.4] Process at PLC

Analog values cannot be directly input in the PLC CPU for an operation. That is why the analog values are converted in digital values when they are input in the PLC CPU as shown in Fig. 1.4. This is carried out by the Analog input module. In addition, for the analog values to be output to the outside, the PLC CPU digital values should be converted into analog values. This function is conducted by the D/A conversion module.

1.2.3. The Characteristics of Analog-Digital Conversion

The Analog input module converts the analog electric signals that are input from an external device into digital values, which makes operations possible in the PLC CPU. When -10 ~ 10 V is used as the analog input range in the Analog input module, the analog input quantity of -10V is digital value 0, and that of 10V is digital value 16000. Therefore this case analog input 1.25mv corresponds to digital value 1 (Fig. 1.5).

(2) Current input

(1) Voltage input

[Fig.1.6] A/D conversion characteristics (current input)

If 0-20mA is used as the analog input range in an Analog input module, the analog input value of 0mA is output as digital value 0, and the analog input value of 20mA is digital 16000. In this case, analog input 1.25 µA corresponds to digital value 1 (Fig. 1.6).

1.3. New Functions

The new functions of Analog input module are as follows.

		Module	CPU OS	
Item	Description	OS	version	Ref.
		version		
Hold last	When input signal exceeds effective range, holds last	V/1 02	Not	25
value	effective input value.	V 1.02	related	2.0
			XGK	
Alorm	When input signal evenede effective range, relevant		V3.2	
AldIII	when input signal exceeds ellective range, relevant	V1.02	XGI V3.1	2.5
TUNCUON	alarm hag turns on.		XGR	
			V1.7	

Chapter 2 Specifications

2.1 General Specifications

Table 2.1 shows the general specifications of XGT series.

$ \begin{array}{ c c c } 1 & Operating temperature \\ \hline \emperature \\ temperature \\ temperature \\ temperature \\ temperature \\ \hline \emperature \\ temperature \\ \hline \emperature $	No.	ltem	Specifications					Related standard
2 Storage temperature Storage humidity 25 ~+70 °C 3 Operating humidity	1	Operating temperature		-				
3 Operating humidity $5 - 95\%$ RH, no condensation . 4 Storage humidity $5 - 95\%$ RH, no condensation . 4 Storage humidity $5 - 95\%$ RH, no condensation . 5 Storage humidity $5 - 95\%$ RH, no condensation . . 5 Storage humidity $5 - 95\%$ RH, no condensation . . 5 Storage humidity $5 - 95\%$ RH, no condensation . . . 5 Storage humidity $5 - 95\%$ RH, no condensation Number of times . . . 5 Storage humidity $10 \le f < 57hz$ $- $ $0.075mm$ Number of times . <td>2</td> <td>Storage temperature</td> <td></td> <td></td> <td>-</td>	2	Storage temperature			-			
4 Storage hunidity Storage hunidity Image: Storage hunidity Image: Storage hunidity Image: Storage	3	Operating humidity		-				
5 Anti-vibration Image: Contamination in the contami	4	Storage humidity		5	~ 95%RH, no cond	ensation		-
5 Anti-vibration Anti-vibration Anti-vibration Anti-vibration Anti-vibration Intervibration Intervibration <td></td> <td></td> <td>W</td> <td>hen there is</td> <td>s intermittent vibratio</td> <td>n</td> <td>-</td> <td>-</td>			W	hen there is	s intermittent vibratio	n	-	-
5 Anti-vibration $10 \le f < 57Hz$ $ 0.075mm$ 57 $\le f \le 150Hz$ $9.8m/s2(1G)$ $ 10 \text{ times each in directions X, Y, Z}}$ $10 \text{ times each in directions X, Y, Z}$ $10 \text{ times each in directions X, Y, Z}$ Y, Z 6 Anti-shock $Frequency$ $Acceleration$ Amplitude Y, Z Y, Z 6 Anti-shock $0 \le f < 57Hz$ $ 0.035mm$ Y, Z Y, Z 6 Anti-shock $Amsimum shock acceleration: 147 m/s^2(15G)$ $ V, Z$ Y, Z IEC 61131-2 6 Anti-shock $Amsimum shock acceleration: 147 m/s^2(15G)$ $ V_{S, Z}$ $IEC 61131-2$ $Pulse wave patter: I + alf sine pulse (3 times each in directions X, Y and Z) IEC 61131-2 IEC 61131-2 P_{S, S, S, S} P_{S, S, S} V_{S, S} IIC 61131-2 IEC 61131-2 $			Frequency	1	Acceleration	Amplitude	Number of times	
5 Anti-vibration $57 \le f \le 150Hz$ $9.8m/s2(1G)$ $ 10 \text{ times each in directions X, Y, Z}$ $10 $			$10 \leq f < 57Hz$		-	0.075mm		
Image: Contract of the standard of the standar	5	Anti-vibration	$57 \leq f \leq 150$ Hz	ç).8m/s2(1G)	-	10 times each	
Image: Frequency Acceleration Amplitude Image: Frequency Acceleration Amplitude Image: Frequency Y, Z 10 \leq f < 57Hz	5		V	Vhen there i	s incessant vibratior	1	in directions X	IEC 61131-2
$ \begin{array}{ c c c } \hline 10 \leq f < 57 \text{Hz} & - & 0.035 \text{mm} \\ \hline 57 \leq f \leq 150 \text{Hz} & 4.9 \text{m/s}^2 (0.5 \text{G}) & - \\ \hline 57 \leq f \leq 150 \text{Hz} & 4.9 \text{m/s}^2 (0.5 \text{G}) & - \\ \hline & \hline$			Frequency	1	Acceleration	Amplitude		
6 Anti-shock 57 \leq f \leq 150Hz 4.9m/s ² (0.5G) - IEC 61131-2 6 Anti-shock •Maximum shock acceleration: 147 m/s ² (15G) •Supply time : 11ms •Pulse wave pattern : half sine pulse (3 times each in directions X, Y and Z) IEC 61131-2 7 Anti-shock Rectangular impulse noise In-house testing standard of LS Industrial System 6 Anti-noise Rectangular impulse noise I.500 V In-house testing standard of LS Industrial System 7 Anti-noise Electrostatic discharge Voltage: 4 kV (contact discharge) IEC 61131-2 IEC 61131-2 IEC 61131-2 IEC 61131-2, IEC			$10 \leq f < 57Hz$		-	0.035mm	., _	
6 Anti-shock •Maximum shock acceleration: 147 m/s ² (15G) •Supply time : 11ms •Pulse wave patters : half sine pulse (3 times each in directions X, Y and Z) IEC 61131-2 7 Anti-shock Rectangular impulse noise In-house testing standard of LS Industrial System 7 Anti-noise Rectangular impulse noise IEC 61131-2 6 Electrostatic discharge Voltage: 4 kV (contact discharge) IEC 61131-2 1EC 61131-2 discharge IEC 61131-2 IEC 61131-2 1EC 61131-2 discharge IEC 61131-2 IEC 61131-2 1EC 61131-2 noise 80~1000MHz, 10 V/m IEC 61131-2 1EC 61131-2 Power module Digital/analog input/output communication interface IEC 61131-2 1EC 61131-2 Voltage 2 kV 1 kV IEC 61131-2 1EC 61100-4-3 Power module Digital/analog input/output communication interface IEC 61131-2 1EC 61100-4-4 Voltage 2 kV 1 kV IEC 61100-4-4 8 Environment Voltage 2 kV - - 9 Altitude IEC 6000-4-3 - - 10 Contamination Electrostage			57 ≤ f ≤ 150Hz	4	.9m/s ² (0.5G)	-		
 Pulse wave pattern : half sine pulse (3 times each in directions X, Y and Z) Pulse wave pattern : half sine pulse (3 times each in directions X, Y and Z) In-house testing standard of LS Industrial System Electrostatic discharge Voltage: 4 kV (contact discharge) IEC 61131-2 IEC 61131-2 IEC 61000-4-2 IEC 61131-2, IEC 61131-2, IEC 61131-2, IEC 61131-2, IEC 61000-4-3 Past transient / bust noise Voltage Voltage 2 kV 1 kV Environment Other and the past of the pa	6	Anti-shock	Maximum shock acc Supply time : 11ms	eleration: 14	17 m/s²(15G)			IEC 61131-2
network Rectangular impulse noise 1,500 V In-house testing standard of LS Industrial System Anti-noise Electrostatic discharge Voltage: 4 kV (contact discharge) IEC 61131-2 IEC 61004-2 Radiating electronic noise Radiating electronic noise Noise IEC 61131-2, IEC 61000-4-3 Past transient / bust noise Power module Digital/analog input/output communication interface IEC 61131-2, IEC 61100-4-3 Past transient / bust noise Voltage 2 kV 1 kV IEC 61131-2, IEC 61100-4-3 Past transient / bust noise Voltage 2 kV 1 kV IEC 61131-2, IEC 61100-4-3 Past transient / bust noise Voltage 2 kV 1 kV IEC 61131-2, IEC 61100-4-3 Past transient / bust noise Voltage 2 kV 1 kV IEC 61131-2, IEC 61100-4-4 Past transient / bust noise Voltage 2 kV 1 kV - Past transient Voltage: 2 kV 1 kV - Past transient Elec 61131-2, IEC 61100-4-3 - - Past transient Voltage: 2 kV 1 kV - - Past transient			 Pulse wave pattern 	n : half sine	e pulse (3 times ea	ach in directions X, Y	′ and Z)	
Image: Anti-noiseElectrostatic dischargeVoltage: 4 kV (contact discharge)IEC 61131-2 IEC 61131-2 IEC 61131-2, IEC 61100-4-48Environment \forall Voltage 2 kV 1 kV $-$ 9Attitude $=$ $ -$ 10Contamination $=$ $-$			Rectangular impulse noise		1,500 V			In-house testing standard of LS Industrial System
7 Anti-hoise Radiating electronic noise 80~1000MHz, 10 V/m IEC 61131-2, IEC 61000-4-3 1 Past transient / bust noise Power module Digital/analog input/output communication interface IEC 61131-2, IEC 61000-4-3 8 Environment Voltage 2 kV 1 kV IEC 61000-4-4 9 Attitude - - 10 Contamination Eleow 2,000 -	-		Electrostatic discharge		Voltage: 4	Voltage: 4 kV (contact discharge)		IEC 61131-2 IEC 61000-4-2
Past transient / bust noise Power module Digital/analog input/output communication interface IEC 61131-2 IEC 61000-4-4 8 Environment Voltage 2 kV 1 kV - 9 Attitude - - - 10 Contamination - - -	1	Anti-noise	Radiating electronic noise 80 ~ 1000MHz, 10 V/m			IEC 61131-2, IEC 61000-4-3		
No corrosive gas or dust ILC 01000444 8 Environment No corrosive gas or dust - 9 Altitude Below 2,000m - 10 Contamination Below 2 -			Past transient		Power module	Digital/analog communicati	input/output on interface	IEC 61131-2
8 Environment No corrosive gas or dust - 9 Altitude Below 2,000m - 10 Contamination Below 2 -			Voltage 2 kV 1 kV		V			
9 Altitude Below 2,000m - 10 Contamination Below 2 -	8	Environment	No corrosive gas or dust					-
10 Contamination Below 2 -	9	Altitude	Below 2,000m					-
	10	Contamination			Below 2			-

[Table 2.1] General specifications

Note

 IEC (International Electrotechnical Commission): An international private group that aims at promoting international cooperation for standardization in electrical and electronic technology areas, publishes international standards and operates related conformity assessment systems.

(2) Contamination: an indicator that shows the contamination level of the environment that determines the insulation of a device. Contamination level 2 is when there is only non-conductive contamination, and there is short conductivity when there is condensation.

2.2 Performance Specifications

Table 2.2 shows the performance specifications of an analog input module.

	-	S	pecifications			
	Voltage		Current			
Analog input range	$\begin{array}{c} DC 1 \sim 5 V\\ DC 0 \sim 5 V\\ DC 0 \sim 10 V\\ DC -10 \sim 10 V\\ (input resistance: 1 M min.) \end{array}$		DC 4 \sim 20 mA DC 0 \sim 20 mA (input resistance: 250 Ω)			
Selection of the analog input range	 Current and voltage are set with the E The analog input range is set in the X Each input range can be set for each 	DIP switch. G5000 user (sequ channel.	uence) program or	[i/O parameter].		
	(1) Voltage Digital output Unsigned value	1~5V	0~5V 0~	0 ~ 10 V 16000	-10 ~ 10 V	
	Signed value		-8000	0~8000		
	Precise value	1000 ~ 5000	0~5000	0~10000	-10000 ~ 10000	
	Percentile value	1	0 ~	10000	•	
Digital output	(2) Current					
	includy input	4 ~ 2	20 mA	0 ~	20 mA	
	Digital output					
	Unsigned value	0~16000				
	Signed value		-8000	~ 8000		
	Precise value	4000 ~	4000 ~ 20000 0 ~ 20000			
	Percentile value		0~	10000		
	 The digital output data format can be 	set through the us	ser program or the [i/O narameter] of	XG5000 for each chan	nel
						101.
	Analog input range (1/	solution (16000)	Analog	input range	Resolution (1/16000)	
Maximum resolution	$1 \sim 5V$ 0.2	250 mV	4 ~ 20 mA		1.0 µA	
		125 mV				_
	-10 ~ 10 V 1.2	250 mV	— 0 ~ 20 mA		1.25 µA	
						-
Precision	Below ±0.2% (when the surrounding to Below ±0.3% (when the surrounding to	emperature is 25 emperature is 0 °C	℃ ±5 ℃) ℃ ~ 55 ℃)			
Maximum conversion speed	250 µs/channel					
Absolute maximum input	±15 V		±30 mA			
Analog input	8 channel/module					
Insulation	Photo coupler insulation between the input terminal and PLC power source (no insulation between channels)					
Access terminal	18 point terminal block					
Input and output	Fixed type: 64 adjustable type: 16 points					
occupancy point						
Internal current	420 mA					
\\/oiaht	140g					
weigi it	itog					

[Table 2.2] Performance specifications

Note

(1) The analog input module has the offset and gain values set for each analog input range when it is manufactured. The user cannot change the values.

(2) The voltage/current selection switch is set at current when shipped at the factory.

(3) Offset value: the analog input value of which the digital output value is 0 when the digital output type is set as an unsigned value

(4) Gain value: the analog input value of which the digital output value is 16000 when the digital output type is set as an unsigned value

(5) The XGR system can be used at the extended base, not the basic base.

2.3 Description of the Parts

This section is about the name of each part.

2.3.1 The Analog Input Module

No.	Name	Description						
1	Operation display LED	 Displays the operating status of XGF-/ On: operating normally Flashing: error Off: DC 5V disconnection, XGF-AD8A 	AD8A . module failure					
2	Terminal block	The terminal block connected to an e analog value current/voltage to be input to be input to be input	The terminal block connected to an external device for each channel for analog value current/voltage to be input					
3	Current/voltage setting switch	► the switch for setting the input time (cu	rrent/voltage) Switch Off	Setting Voltage				
		Off ← On	On	Current				

2.4 Characteristics of Input/Output Conversion

The characteristics of input/output conversion is the slope of the straight line connecting the offset and the gain values when the analog signals (current or voltage input) from the PLC external device into digital values. Below are the characteristics of input/output conversion of the analog input module.

Voltage input Practical analog input range 8191 8000 16191 16000 10119 10000 Gain 7500 4000 12000 Digital 5000 0 8000 output 2500 -4000 4000 0 -8000 0 -192 -120 -8192 Offset DC 1 ~ 5 V 1 V 3 V 5 V Analog DC 0 ~ 5 V 0 V 2.5 V 5 V input DC 0 ~ 10 V 0 V 5 V 10 V DC -10 ~ 10 V -10 V 0 V 10 V Current input Practical analog input range 16191 16000 10119 8191 10000 8000 Gain 7500 4000 12000 Digital 5000 0 8000 output 2500 4000 -4000 0 -8000 0 -120 -8192 -192 Offset Analog DC 4 ~ 20 mA 12 mA 4 mA 20 mA input DC 0 ~ 20 mA 0 mA 10 mA 20 mA

LSis | 2-5

2.4.1 Input/Output Characteristics of XGF-AD8A

Being a 8 channel analog input module, the offset/gain of the analog input module cannot be set by the user. The voltage input range can be set for each channel by using the user program or [I/O parameter] of XG5000. The output form of the digital data is defined as follows.

- (a) Unsigned Value
- (b) Signed Value
- (c) Precise Value
- (d) Percentile Value

(1) In the range of DC 4 \sim 20 mA

(a) Set [setting range] at 4 ~ 20 mA in [set I/O parameter] of XG5000.

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable							
Input range	4~20mA							
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling							
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable							

Digital output			Analog	input curre	nt (mA)		
range	3.808	4	8	12	16	20	20.191
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (3808 ~ 20191)	3808	4000	8000	12000	16000	20000	20191
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

(Resolution (for 1/16000): 1 µA)

(2) In the range of DC 0 \sim 20 mA

(a) Set [setting range] at 0 ~ 20 mA in [set I/O parameter] of XG5000.

LSis | 2-7

(resolution (for 1/16000): 1.25 µA)

Digital output			Analog	input curre	nt (mA)		
range	-0.24	0	5	10	15	20	20.239
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (-240 ~ 20239)	-240	0	5000	10000	15000	20000	20239
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

(3) In the range of DC 1 ~ 5 V

(a) Set [setting range] at 1-5V in [set I/O parameter] of XG5000.

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable							
✓ Input range	1~5V							
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling							
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable							

2-8 | **LS**is

Digital output			Analo	g input volta	age (V)		
range	0.952	1	2	3	4	5	5.047
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (952 ~ 5047)	952	1000	2000	3000	4000	5000	5047
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

(resolution (for 1/16000): 0.25 mV)

(4) In the range of DC 0 $\sim 5~\text{V}$

(a) Set [setting range] at 0 ~ 5V in [set I/O parameter] of XG5000

LSis | 2-9

(resolution (for 1/16000): 0.3125 mV)

Digital output			Analo	g input volta	age (V)		
range	-0.06	0	1.25	2.5	3.75	5	5.05
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (-60 ~ 5060)	-60	0	1250	2500	3750	5000	5059
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

(5) In the range of DC 0 \sim 10 V

(a) Set [setting range] at 0 ~ 10V in [set I/O parameter] of XG5000.

Edid	meter	CH	10	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Chan	nel status	Dis	able	Disable	Disable	Disable	Disable	Disable	Disable	Disable
Inpi	ut range	0~	10V	0~10V	0~10V	0~10V	0~10V	0~10V	0~10V	0~10V
Outp	ut type	0~1	5000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average	processing	Sam	pling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Averag	e value	()	0	0	0	0	0	0	0
Hold	last value	Dis	able	Disable	Disable	Disable	Disable	Disable	Disable	Disable
	10119	10119	8191	16191						
	10000	10000	8000	16000						
7500 Digital 5000	7500	7500	4000	12000						
									i	
Digital outpu	5000	5000	0	8000						
Digital output	5000 2500	5000 2500	0 -4000	8000 4000						

2-10 1515

(resolution (for 1/16000): 0.625 mV)

Digital output			Analo	g input volta	age (V)		
range	-0.12	0	2.5	5	7.5	10	10.119
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

(6) In the range of DC-10 \sim 10 V

(a) Set [setting range] at -10 ~ 10V in [set I/O parameter] of XG5000.

LSis | 2-11

(resolution (for 1/16000): 1.25 mV)

Digital output			Analo	g input volta	age (V)		
range	-10.24	-10	-5	0	5	10	10.23
Unsigned value (-192 ~ 16191)	-192	0	4000	8000	12000	16000	16191
Signed value (-8192 ~ 8191)	-8192	-8000	-4000	0	4000	8000	8191
Precise value (-10240 ~ 10239)	-10240	0	2500	5000	7500	10000	10239
Percentile value (-120 ~ 10119)	-120	0	2500	5000	7500	10000	10119

Note

(1) When a value out of the digital output range is inputted as the analog input value, the digital output value is maintained as the maximum or the minimum value that fall within the set output range. For example, when the digital output range is set as the Unsigned value ($-192 \sim 16191$), and an analog value that exceed 6191 or -192 is entered as the digital output value, the digital output value is fixed at 16191 or -192.

(2) The offset/gain of the analog input module cannot be set by the user.

▶ Do not put the voltage and current beyond ±15 V and ±30 ^{mA} respectively. Otherwise it may cause a failure due to over current/voltage.

2.4.2 Precision

The precision for the digital output value does not change if the input range is changed. Fig 2.1 shows the range of precision at surrounding temperatures of $25 \pm 5^{\circ}$ C when the analog input range and digital output type are set at -10 ~ 10 V and Unsigned value respectively. The precision is $\pm 0.2\%$ and $\pm 0.3\%$ when the temperature is $25 \pm 5^{\circ}$ C and $0 \sim 55^{\circ}$ C respectively.

[Fig. 2.1] Precision (at $25 \pm 5^{\circ}$ C)

2.5 Functions of the Analog Input Module

[Table 2.3] explains the functions of the analog conversion module.

Functions	Description	Reference
Set channel operating/stop	Sets the operating/stop of the channel to conduct A/D conversion. You can reduce the time it takes for analog conversion by setting the channel you don't use at stop.	
Set input	Sets the analog input range you want to use.	
voltage/current ranges	There are 4 input ranges for voltage input, and 2 for current input.	
Set the output data type	Sets the digital output type. 4 output data types are provided in this module.	
A/D conversion type	 Sampling When no A/D conversion type is specified Average time/number Outputs the A/D conversion value of the average frequency or time. Weighted average Slows a sudden change of the input value. 	
Detection of an input	If the analog input at 4 ~ 20 mA and 1 ~ 5 V is disconnected, it can be detected in the user	
disconnection	program.	
Hold last value	(1) This function is supported at current input (4~20mA, 0~20mA)(2) When input signal exceeds the effective range, holds the last effective value.	2.5.4 5.3.7
Alarm function	(1) Separate setting is not necessary(2) When input signal exceeds the effective range, relevant flag turns on to let the user know	2.5.5 5.1.1

[Table 2.3] List of functions

There are sampling and average processing types for A/D conversion.

2.5.1 Sampling Processing

A common A/D conversion, sampling processing conducts A/D conversion collecting analog input signals at a regular interval. The time it takes for the analog input signals to be A/D converted and stored in the memory differs according to the number of the channels being used.

(Processing time) = (number of channels being used) X (conversion speed)

e.g.) The processing time when 3 channels are being used

3 X 250 µs = 750 µs

Sampling means picking up continuous analog signals as sample values at regular intervals.

2.5.2 Average Processing

The A/D conversion of a designated channel is conducted a set times or for a set time and the average of the sum is stored in the memory.

(1) Why is average processing used?

Abnormal analog input signals such as noise can be A/D converted to a value close to a normal analog input signal.

(2) Types of average processing

Average processing divides into time, count and weighted averages.

- (a) Time average processing
 - 1) Settable range: 16 ~ 16000 (ms)
 - 2) The number of average processing processes within the set time is decided according to the number of the channels being used when you use the time average.

_	Set-up time					
_	No. channels used	x	Conversion speed			

Example 1) the number of channels being used: 1, set time: 16000 ms

Averaging Frequency = $\frac{16000 \ ms}{1 \times 0.25 \ ms}$ = 64000 Times

Example 2) the number of channels being used: 8, set time: 4 ms

Averaging Frequency = $\frac{4 ms}{8 \times 0.25 ms}$ = 2 Times

- *1: If you do not set the time average within 4 ~ 16000, RUN LED flashes every second. If you want to keep RUN LED on, reset the time average within 4 ~ 16000 and switch the operating mode of the CPU module from STOP to RUN. If you want to end the error through modification, you must use the clear request flag (UXY.11.0).
- *2: In case of an error of the time average value setting, the set value is saved as 4, which is the initial value. The time average is converted into the number average inside the analog input module. In this case, there can be a remainder as time is divided by (the number of channels being used X conversion speed). The remainder is dropped, and the number of average processing processes is (the number of channels being used X conversion speed)/(set time).

Example) When the number of channels being used is 5 and the set time is 151 ms, 151 ms \div (5 X 0.25 ms) = 120 times the remainder is 8 \rightarrow 120 times

(b) Count average processing

1) Settable range: 2 ~ 64000 (times)

2) When you use the number average, the times it takes for the average value to be saved in the memory differs according to the number of the channels being used.

The processing time = the set number X the number of the channels being used X conversion speed

- *1: If you do not set the time average within 2 ~ 64000, RUN LED flashes every second. If you want to keep RUN LED on, reset the time average within 2 ~ 64000 and switch the operating mode of the CPU module from STOP to RUN. If you want to end the error through modification, you must use the error clear request flag (UXY.11.0).
- *2: In case of an error of the number average value setting, the set value is saved as 2, which is the initial value.

Example) when the number of channels being used 4 and the number of average processing processes is 50 times, 50 X 4 X (0.25 ms) = 50 ms

(c) Weighted average processing

Weighted average processing is for getting stable digital output values by filtering sudden changes of the noise or input values. The weighted average constant can be set for each channel by setting the user program or I/O parameter.

1) Settable range: $1 \sim 99(\%)$

 $F[n] = (1 - \alpha) \times A[n] + \alpha \times F[n - 1]$

F[n]: the current weighted average output value

A[n]: the current A/D conversion value

F[n-1]: the previous weighted average output value

- \sim α : weighted average constant (0.01 ~ 0.99: weighted value of the previous value)
- a) If you do not set the time average within 1~99, RUN LED flashes every second. If you want to keep RUN LED on, reset the time average within 4 ~ 16000 and switch the operating mode of the CPU module from STOP to RUN. If you want to end the error through modification, you must use the clear request flag (UXY.11.0).
- b) In case of an error of the number average value setting, the set value is saved as 1, which is the initial value.

2) Voltage input

- a) The analog input range is set at DC -10 \sim 10 V and the digital output range is set at 0 \sim 16000.
- b) When the analog input value changes –10 V \rightarrow 10 V (0 \rightarrow 16000), the weighted average output value according to α is as follows.

	W	eighted avera	Noto		
a value	-	1 scan	2 scans	3 scans	Note
*1\0.01	0	15840	15008	15000	1% biased toward previous
1) 0.01	Ū	13040	15990	10000	value
^{*2)} 0.5	0	8000	12000	14000	50% biased toward previous
					value
* ³⁾ 0 00	0	160	210	475	99% biased toward previous
0.99	0	100	510	4/5	value

- *1) 16000 output after about 4 scans
- *2) 16000 output after about 24 scans
- *3) 16000 output after about 1491 scans (372.75 ms in case of 1 channel operation)

3) Current input

- a) The analog input range is set at DC 0 ~ 20 mA and the digital output range is set at 0 ~ 16000.
- b) When the analog input value changes 0 mA \rightarrow 10 mA (0 \rightarrow 8000), the weighted average output value according to α is as follows

(value	W	eighted avera	Noto			
	-	1 scan	2 scans	3 scans	NOLE	
^{*1)} 0 01	0	7020	7000	7000	1% biased toward previous	
0.01	0	1920	7999	1999	value	
^{*2)} 0.5	0	4000	6000	7000	50% biased toward previous	
0.5	0	4000	0000	7000	value	
*3) 0 00	0	90	150	227	99% biased toward previous	
⁷ 0.99	U	80	159	237	value	

*1) 8000 output after about 4 scans

* 2) 16000 output after about 21 scans

*3) 8000 output after about 1422 scans (355.5 ms in case of 1 channel operation)

4) If you do not use the weighted average processing, the current A/D conversion value is directly output.

Weighted processing is getting data by putting a weighted value between the current and the previous A/D conversion values, and the weighted value can be decided by the average value. If there is much wavering of the output data, set the average value high.

2.5.3 Detection of Input Disconnection

(1) Settable range

You can detect disconnection of the input circuit when you use the input signal range of 4 ~ 20 mA, 1 ~ 5 V. The conditions for detection of each input signal range is as shown in the table below.

Input signal range	Current/voltage values perceived as
	disconnection
1 ~ 5 V	Below 0.2 V
4 ~ 20 mA	Below 0.8 mA

(2) Display of disconnection by channel

The disconnection detection signal for each input channel is saved in UXY.10.

(X represents the base number and Y the slot number)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Allocate	-	-	-	-	-	-	-	-	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

BIT	Description
0	Normal
1	Disconnected

(3) Action

Each bit is set as 1 when a disconnection is detected of an allocated channel. Each bit can be used for detecting disconnection in the user program as shown in the table of conditions above.

(4) An example of the program

If a module is mounted in base 0, slot 2, below is an example of using the disconnection detection flag. If a disconnection is detected of the channel, the detected channel number is written in the P area.

(System configuration)

XGP- ACF2	XGK- CPUH		XGF- AD8A	

S0 K	(00000 H/H	U02.00,F 				K00000 (S)
к 83	(00000 		МО	V I	J02, 10	M0000
	_	U02, 10,0	МО	V	0	P0000
		U02, 10, 1	МО	V	1	P0001
		U02, 10, 2	МО	٧	2	P0002
		U02, 10, 3	МО	V	3	P0003
		U02, 10, 4	МО	V	4	P0004
		U02, 10, 5	МО	V	5	P0005
		U02, 10, 6	МО	۷	6	P0006
		U02.10.7	МО	V	7	P0007

2.5.4 Hold last value (Dedicated for current input)

When input signal exceeds the effective range, last input value is held. This function can be set for each channel by I/O parameter setting or user program.

(1) Input range to be used

This function can be used when you use input signal range of 4~20mA, 0~20mA. So this function can be used in current input module. In this function - enabled channel, only value of effective range is indicated. For example, in case output data type is unsigned value, if this function is disabled, output data has the -192~16191 range. But this function is enabled, output data has the 0~16000 range.

Input current range	Classification	Unsigned	Signed	Precise	Percentile
4~20 mA	Disable	-192~16191	-8192~8191	3808~20191	-120~10119
	Enable	0~16000	-8000~8000	4000~20000	0~10000
0~20 mA	Disable	-192~16191	-8192~8191	-240~20239	-120~10119
	Enable	0~16000	-8000~8000	0~20000	0~10000

(2) Operation

When this function is enabled and range is 4~20mA, output value corresponding to sample input value is as follows. (Output data type: 0~16000)

Input current	12	3	4	12	21	20
(mA)						
Output value	8000	8000	0	12000	12000	16000
Ref.	-	Hold last	-	-	Hold last	-
		value			value	

2.5.5 Alarm function

.

When input signal exceeds effective range, relevant flag turns on.

(1) Input detection condition

Detection condition for each input signal range is as follows.

Input signal range	Difference	Tolerance	Lower limit	Upper limit	
4~20 mA	16 mA	16 mA		20.192 mA	
0~20 mA	20 mA		-0.24 mA	20.24 mA	
1~5 V	4 V	1.2%	0.952 V	5.048 V	
0~5 V	5 V		-0.06 V	5.06 V	
0~10 V	10 V		-0.12 V	10.12 V	
-10~10 V	20 V		-10.24 V	10.24 V	
(2) Alarm indication for each channel

Alarm detection signal is saved at UXY.20 and UXY.21. If input signal returns to the within of effective range, alarm detection signal also returns to the normal status automatically.

(X: base number, Y: slot number)

UXY.20: upper limit

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Allocation	-	-	-	-	-	-	-	-	CH							
									7	6	5	4	3	2	1	0

BIT	Description
0	Normal
1	Upper limit alarm

UXY.21: lower limit

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Allocation	-	-	-	-	-	-	-	-	СН	СН	СН	CH	СН	СН	СН	СН
									7	6	5	4	3	2	1	0

BIT	Description
0	Normal
1	Lower limit alarm

Chapter 3 Installation and Wiring

3.1 Installation

3.1.1 Installation Environment

Although this device has high reliability regardless of the environment where it is mounted, pay attention to the following conditions for reliability and stability of the system.

(1) Environment conditions

- (a) Mount on a water-proof and vibration proof controlling board.
- (b) Where there are no continuous shocks or vibrations
- (c) Where there is no direct sunlight
- (d) Where there is no condensation caused by sudden changes of the temperature
- (e) Where the temperature remains between 0-55 $^\circ\!\mathrm{C}$

(2) Installation work

- (a) Do not leave wiring remnants in the PLC when boring screw holes or doing wiring work.
- (b) Install in a place where you can easily manipulate it.
- (c) Do not install with a high voltage device in the same panel
- (d) Keep at least 50mm from a duct or module.
- (e) Connect to ground where the noise environment is good.

3.1.2 Precautions in Handling

This section provides information on the precautions in from opening to installing the analog conversion module.

- (1) Do not drop or hit hard.
- (2) Do not separate the PCB from the case. It may cause a failure.
- (3) Be careful not to let foreign substances such as the wiring remnants in the upper part of the module when doing the wiring work.
- (4) Do not mount or dismount when the power is on.

3.2 Wiring

3.2.1 Precautions in Wiring

- (1) Do not put an AC power supply line near an external input signal line of an analog input module. Keep them apart enough not to be affected by the surge or induced noise from the AC side.
- (2) Consider the surrounding temperature and allowed current when choosing the cable. A cable should be larger in maximum diameter than AWG22(0.3^{mm²}).
- (3) If the cable is placed too close to a hot device or material or put in direct contact with oil, for example, it may cause a short circuit and result in damage or malfunction.
- (4) Check the polarity when wiring the terminal block.
- (5) When cables are wired with high voltage lines or power supply cords, an induction failure may occur resulting in malfunction or a failure.

3.2.2 An Example of Wiring

(1) Voltage inputs

(2) Current inputs

*1) Use 2 core twist shield cable. AWG 22 is recommended for the size of the cable.

- *2) 250 Ω (typ.) as the current input resistance of the analog input module.
- *3) 1 M Ω (min.) as the voltage input resistance of the analog input module.

LSis

3-3

(3) An example of 2-wire sensor/transmitter wiring (current inputs)

- (a) Set only the channel you are using at channel operation.
- (b) The analog input module does not supply the power for an input device. Use an external power supply.

(4) An example of 4-wire sensor/transmitter wiring (voltage and current inputs)

- (a) Set only the channel you are using at channel operation.
- (b) The analog input module does not supply the power for an input device. Use an external power supply.
 - *1) Use 2 core twist shield cable. AWG 22 is recommended for the size of the cable.
 - *2) 250 Ω (typ.) as the current input resistance of the analog input module.
 - *3) 1 M Ω (min.) as the voltage input resistance of the analog input module.

(5) The relation between the voltage input precision and wiring length

The wiring length between the transmitter or sensor and the module in voltage inputs affect the digital conversion values of the module as shown below.

In the figure,

Rc: the loop resistance of the cable

Rs: the internal resistance of the transmitter or sensor

Ri: the internal resistance of the module $(1^{M\Omega})$ when the voltage is input

Vin: the voltage supplied to the analog input module

% Vi: the error (%) of the conversion values resulting from the source and cable lengths in voltage inputs

$$Vin = \frac{Ri \times Vs}{\left[Rs + \left(2 \times Rc\right) + Ri\right]}$$

$$\%Vi = \left(1 - \frac{Vin}{Vs}\right) \times 100\%$$

Note

There is no precision error from the cable length and the internal resistance of the source in current inputs.

Chapter 4 Operating Setting

4.1 The Operating Setting Flowchart

Fig. 4.1 illustrates the operating setting flowchart.

[Fig. 4. 1] Operating setting flowchart

4.2 Operating Parameter Setting

The operating parameters of the analog input module can be set in [I/O parameter] of XG 5000.

4.2.1 Setting Items

XG5000 provides GUI (Graphical User Interface) type parameter setting of the analog input module in order to enhance the user's convenience. Table 4.1 shows the parameters that can be set through [I/O parameter] in the project window of XG5000.

	Description
[I/O parameter]	(1) The following items are set that are necessary for operating the module.
	(a) channel run/stop
	(b) analog input range
	(c) digital output data type
	(d) average processing method
	(e) average value
	(2) The data set by the user in XG5000 is stored in the analog input module when
	[I/O parameter] is downloaded. That is, when [I/O parameter] is stored in the
	analog input module is not related to the RUN or STOP of PLC CPU.

[Table 4. 1] Functions of [I/O parameter]

4.2.2 How to Use [I/O Parameter]

- (1) Start XG5000 and create a project.
 - (For how to create a project, see the program manual of XG5000)
- (2) Double-click on [I/O parameter] in the project window.

Items Items NewPLC(XGK-CPUH)-Offline Variable/Comment Parameter Basic Parameter I/O Parameter	×	Project Window
wnvn * NewPLC(XGK-CPUH)-Offline Variable/Comment Parameter Basic Parameter VO Parameter VO Parameter		Items
Scan Program		wnvn* wnvn* wwPLC(XGK-CPUH)-Offline wightharpoonup Variable/Comment wightharpoonu

(3) Click on the slot of the base where the analog input module is mounted in the [set I/O parameter] window. In this illustration is the 8 channel voltage type analog input module mounted in slot 1, base 0.

I/O Parameter Setting - V	ariabl	e alloc	ation				?
All Base Set Base							
🖃 🛅 Base 00 : Default	~	Slot	Module	Comment	Input Filter	Emergency Out	Allocation
00 : Default		0					
01:Default		1	*			(
02 : Default		2					
03 : Default		3					
04 : Default		4					
05 : Default		5					
06 : Default							
07 : Default							
00 : Default		4					
10 . Default		8					
10 : Default		9					
Base 01 : Default		10					
Base 02 : Default		11					
Base 03 : Default							
	<u> </u>						
	2						
	Dak	sto Slot	Delete Page Page Settin		Dotailo 🗌	Print T	OK Cancel
	Dele	te Sior	Delete Base Dase Settin				UK Cancer

(4) Click on the arrow button and then a window will appear where you can choose a module. Find and choose a desired module.

I/O Parameter Setting -	Variabl						? 🛛
All Base Set Base							
🖃 🗊 Base 00 : Default	~	Slot	Module	Comment	Input Filter	Emergency Out	Allocation
00 : Default		0					
01 : Default		1	•				
02 : Default		2 ⊞…[Digital Module List				
03 : Default		3 🖻 🥫	Special Module List				
04 : Default		4 6	🗁 🗍 🛛 Analog Input Mod	ule			
05 : Default	=	5	- 🗍 XGF-AV8A (V	oltage, 8-CH)			
00 . Default		6	GF-AC8A (C	urrent, 8-CH)			
08 : Default		7	XGF-AD4S [l	solated, 4-CH)			
09 : Default		8		ur/Volt, 8-CHJ			
10 : Default		9	Andra Duteut Ma	dula			
11 : Default		10	- El High Speed Coupl	ter Module			
🕀 🗂 Base 01 : Default		11 9	- El Positionina Module	9			
🕀 🗂 Base 02 : Default			Motion Module				
🗄 🗂 Base 03 : Default	~		- 🗍 Temp. Measuring	Module			
<	>	G	Ge Module				
			🗉 🗍 Process control m	odule			
			🔄 🗄 Analog IO Module				
	Dele	ete Slot 🗎 🕀	Communication Modul	e List	ils	Print V	OK Cancel
		±	Beserved Module				

(5) Click on [Detail] button with the module chosen.

I/O Parameter Setting - Variable	e allocation				<u>?</u> 🔀
🖃 🗊 Base 00 : Default 🛛 🔼	Slot Module	Comment	Input Filter	Emergency Out	Allocation
00 : Default	0				
01 : XGF-AD8A (Cur	1 XGF-AD8A (Cur/Volt, 8-CH) -		•	· .	P00010 ~ P0001F
02 : Default	2				
03 : Default	3				
04 : Default	4				
05 : Default	5				
07 : Default	6				
08 : Default	7				
09 : Default	8			· •	
10 : Default	9				
11 : Default	10			·······	
Base 01 : Default	11				
H Base 02 : Default					
E G Base 03 : Default				/	
< >					
Dele	te Slot Delete Base Base Set	ting Delete All [Details	Print V	OK Cancel

(6) A window will appear where you can set the parameters for each channel as shown below. If you click on the item you want to set, the parameters that you can set will be displayed.

GF-AD8A (Cur/Volt, 8-CH)								
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable 🖌	Disable						
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
								Cance

(a) Operating channel: chooses run or stop.

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable 🖌	Disable						
📃 Input range	Disable	4~20mA						
Output type	Enable	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable

(b) Input range: chooses the range of the analog input voltage or current you want to use.

The analog input module provides 2 current input ranges and 4 voltage input ranges.

Parameter	CH 0	CH1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
📃 Input range	4~20mA 🔺	4~20mA						
Output type	4~20mA	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	0~20mA	Sampling						
Average value	1~5V	0	0	0	0	0	0	0
Hold last value	0~5V 0~10V	Disable						

(c) The output data type: chooses the output data type. You have 4 options.

XGF-AD8A (Cur/Volt, 8-Cl	H)							?
XGF-AD8A (Cur/Volt, 8-CH)								
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	0~16000 🔽	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	0~16000	Sampling						
Average value	-8000~8000	0	0	0	0	0	0	0
Hold last value	4000~20000	Disable						
	-0~10000(%)							
							OK	Cancel

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling 🔽	Sampling						
Average value	Sampling	0	0	0	0	0	0	0
Hold last value	Time-Avr	Disable						
Hold last value	Count-Avr	DISADIE	DISABle	DISABle	DISABle	DISABle	DISABle	DISabl

(d) Average processing: you can choose the average processing type. There are 4 options.

(e) Average: you can enter the average in this field only when you have set the three types (time, number and weighted averages). If you double-click on the average with one of the aforementioned three chosen, you will be able to enter a value in the field. The range of the values you can enter in the field is respectively 4~16000, 2~64000 and 0~99 for time, number and weighted averages. Any values beyond the ranges cannot be entered.

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable							
Input range	4~20mA							
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Time-Avr	Sampling						
Average value	16000	0	0	0	0	0	0	0
Hold last value	Disable							

(f) Change all parameter: If you want to change all the channels to the same set value, check the radio button in the parameter row. Then, if you change the parameter of a channel, the parameters of all the channels will change at the same time. Fig. 4.2 gives an example in which the operating channel is changed to all channel operating by using this function.

[Fig. 4. 2]	Change all	channel	parameters
-------------	------------	---------	------------

XGF-AD8A (Cur/Volt, 8-Cl	H)							?
XGF-AD8A (Cur/Volt, 8-CH)		/						
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Enable 🗸 🗸	Enable						
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
	_							
							ОК	Cancel

4.3 Functions of the Special Module Monitor

Table 4.3 shows the functions of the special module monitor.

ltem	Description	Note
[Special	(1) Monitor/test	
module	You can monitor the A/D conversion value or test the operating of the analog	
monitor]	input module through the menu connected to [Monitor] of XG5000 -> [Special	
	module monitor].	
	(2) Minimum/maximum monitor	-
	You can monitor the minimum and maximum values of a running channel. The	
	values you can see are the current values displayed on the screen. Therefore	
	the minimum and maximum values are not saved when you close the	
	[Monitoring/test] window.	

Note

If there are not enough system resources of the PC you are using, the display may not be normally functioning. In such a case, close the window, end other applications and restart XG5000.

4.4 Precautions

(1) The parameters you set to test the analog input module in the [Special module monitor] window are gone as soon as the [Special module monitor] window is closed. That is, the parameters of the analog input module set in the [Special module monitor] window are not saved in [I/O parameter] on the left tab of XG5000.

(2) The test function of the [Special module monitor] is for checking whether the analog input module operates normally when no sequence program has been configured. If you use the analog input module for other purposed than testing, it is recommended you use the parameter setting function in [I/O parameter].

4.5 How to Use the Special Module Monitor

4.5.1 Starting [Special module monitoring]

Go [Online] -> [Access], and then [Monitor] -> [Special module monitoring]. If you are not in the [Online] status, the [Special module monitoring] menu will not be activated.

4.5.2 How to Use [Special module monitoring]

(1) Click on [Monitor] -> [Special module monitoring] with XG5000 connected to the PLC CPU module. Then the [Special module list] window will appear displaying the base/slot information along with the types of the special module as in [Fig. 5.1]. The list dialog displays the module currently mounted in the PLC system.

Special Modul	e List	×
Base 🗂 Base O	Slot	Module XGF-AD84 (Cur/Volt, 8-CH)
Module Info.	Monitor	

[Fig. 5.1] Special module list

(2) Select the special module and click on [Module information] in Fig. 5.1., and then the [Special module information] will appear as in Fig. 5.2.

Special Module Informa	ation ? 🔀
Displays the inform	nations of special module.
Item	Information
OS Ver	Ver. 0.0
OS Update Date	0-0-0
Module Status	Normal.
,	ОК

[Fig. 5.2] [Select module information]

(3) Click on the [Monitor] button in the [Special module list] in Fig. 5.1, and then the [Special module monitor] window will appear as in [Fig. 5.3].

There are 4 buttons of [Reset max/min], [Start monitoring], [Start test] and [Close] in this window. The monitor at the top of the screen displays the outputs of the analog input module and maximum/minimum values. In the test window at the bottom of the screen, you can configure the parameter items discretely of each module.

S	pecial Module Monitor		? 🛛
	XGF-AD8A (Cur/Volt, 8-CH)		
	Item	Max/Min value	Current value
	CH0 A/D value		
	CH1 A/D value		
	CH2 A/D value		
	CH3 A/D value		
	CH4 A/D value		
	CH5 A/D value		
	CH6 A/D value		
	CH7 A/D value		
	ltem	Setting Value	Current Value
		coung raido	Carrent Value
	Channel	CH	
	Channel Channel status	CH Disable	
	Channel Channel status Input range	CH Disable 4~20mA	
	Channel Channel status Input range Output type	CH Disable 4~20mA 0~16000	0
	Channel Channel status Input range Output type Average processing	CH Disable 4~20mA 0~16000 Sampling	
	Channel Channel status Input range Output type Average processing Average value	CH Disable 4~20mA 0~16000 Sampling 0	
	Channel Channel status Input range Output type Average processing Average value Hold last value	CH Disable 4~20mA 0~16000 Sampling 0 Disable	
	Channel Channel status Input range Output type Average processing Average value Hold last value	CH Disable 4~20mA 0~16000 Sampling 0 Disable	
	Channel Channel status Input range Output type Average processing Average value Hold last value	CH Disable 4~20mA 0~16000 Sampling 0 Disable	
	Channel Channel status Input range Output type Average processing Average value Hold last value Reset max/min value	CH Disable 4~20mA 0~16000 Sampling 0 Disable	0 Test

[Fig. 5.3] [Special module monitor]

(a) [Start monitoring]: If you clink on [Start monitoring], the A/D conversion value of the currently running channel will be displayed. Fig. 5.4 is the monitoring that you see when the analog input module is all channel stop status. The current value field at the bottom of the window displays the parameter of the currently set analog input module.

Sp	ecial Module Monitor		? 🔀
×	(GF-AD8A (Cur/Volt, 8-CH)		
Γ	Item	Max/Min value	Current value
	CH0 A/D value	0/0	0
F	CH1 A/D value	0/0	0
	CH2 A/D value	0/0	0
	CH3 A/D value	0/0	0
Г	CH4 A/D value	0/0	0
Г	CH5 A/D value	0/0	0
Г	CH6 A/D value	0/0	0
	CH7 A/D value	0/0	0
-			
H	Item	Setting Value	Current Value
L	Channel	CH	10
L	Channel status	Enable	Enable
L	Input range	1~5V	1~5V
	Output type	0~16000	0~16000
	Average processing	Sampling	Sampling
	Average value	0	0
Г	Hold last value	Disable	Disable
ſ	Reset max/min value	Stop Monitoring	Test
-			
			Liose

[Fig. 5.4] The display of [Start monitor]

(b) [Test]: [Test] is used when you want to change the parameter of the currently set analog input module. You can change the parameter by clicking on the set value in the field at the bottom of the window. Fig. 5.5 is when you execute [Test] after changing the input voltage range of channel 0 to 1~5V

Special Module Monitor		? 🛛
XGF-AD8A (Cur/Volt, 8-CH)		
Item	Max/Min value	Current value
CH0 A/D value	0/-192	-192
CH1 A/D value	0/0	0
CH2 A/D value	0/0	0
CH3 A/D value	0/0	0
CH4 A/D value	0/0	0
CH5 A/D value	0/0	0
CH6 A/D value	0/0	0
CH7 A/D value	0/0	0
	Cotting Volue	Current Value
Item	Setting value	Current value
Channel	CH	10
Channel Channel Status	Enable	10 Enable
Channel Channel Channel status Input range	CH Enable 1~5V	10 Enable 1~5V
Item Channel Channel status Input range Output type	CF Enable 1~5V 0~16000	Enable 1~5V 0~16000
Item Channel Channel status Input range Output type Average processing	CH Enable 1~5V 0~16000 Sampling	10 Enable 1~5V 0~16000 Sampling
Item Channel Channel status Input range Output type Average processing Average value	CF Enable 1~5V 0~16000 Sampling 0	10 Enable 1~5V 0~16000 Sampling 0
ttem Channel Channel status Input range Output type Average processing Average value Hold last value	Ct Enable 1~5V 0~16000 Sampling 0 Disable	10 Enable 1~5V 0~16000 Sampling 0 Disable
ttem Channel Channel status Input range Output type Average processing Average value Hold last value	Ct Enable 1~5V 0~16000 Sampling 0 Disable	40 Enable 1~5V 0~16000 Sampling 0 Disable
Item Channel Channel status Input range Output type Average processing Average value Hold last value Reset max/min value	Ct Enable 1~5V 0~16000 Sampling 0 Disable	to Enable 1~5V 0~16000 Sampling 0 Disable

[Fig. 5.5] [Start test]

(c) [Reset max/min value]: shows the maximum and minimum A/D conversion values at the top of the window. If you clink on it, the maximum and minimum values are reset. Fig. 5.6 is when you click on [Reset max/min] in Fig. 5.5. As shown, the A/D conversion value of channel 0 has been reset.

Item	Max/Min value	Current value
CH0 A/D value	-192 / -192	-192
CH1 A/D value	0/0	0
CH2 A/D value	0/0	0
CH3 A/D value	0/0	0
CH4 A/D value	0/0	0
CH5 A/D value	0/0	0
CH6 A/D value	0/0	0
CH7 A/D value	0/0	0
Item	Setting Value	Current Value
Channel	Cł	40
Channel status	Enable	Enable
Input range	1~5V	1~5V
Output type	0~16000	0~16000
Average processing	Sampling	Sampling
Average value	0	0
Hold last value	Disable	Disable

[Fig. 5.6] [Reset max/min]

(d) [Close]: used when you want to close the monitoring or test window. When you close the windows, the maximum, minimum and current values are not saved.

4.6 Automatic Registration of U Device

This section provides information on the automatic registration of U device of XG5000.

4.6.1 Automatic Registration of U Device

The variables for each module are automatically registered referring to the information of the special module set in [I/O parameter]. The user can modify the variables and the descriptions.

[Sequence]

(1) Set the special module in the slot in [I/O parameter].

I/O Parameter Setting - Variable allocation								
All Base Set Base								
🖃 🗊 Base 00 : Default 📃 🔨	Slot	Module	Comment	Input Filter	Emergency Out	Allocation		
00 : Default	0							
01:XGF-AD8A (Cur	1 XG	aF-AD8A (Cur/Volt, 8-CH)			-	P00010 ~ P0001F		
02 : Default	2							
03 : Default	3							
05 : Default	4							
06 : Default	5							
07 : Default	6							
08 : Default	7							
09 : Default	8							
10 : Default	9							
II: Default	10							
Base 02 : Default	11							
⊕ Base 03 : Default								
_								
Dele	ete Slot	Delete Base Base Settin	ng Delete All D	etails <u>F</u>	Print V	OK Cancel		

(2) Double-click on [Variable/Comment].

Project Window v x	V Vi	ew Variable D View	v Device 🛛 👘	View Flag	
⊡		Variable	Туре 🔺	Device	
NewPLC(XGK-CPUH)-Offline	1				
Variable/Comment	2				
	3				
Basic Parameter	4				
European Program	5				
	6				
	7				

(3) Choose 'Register U Device' in [Edit] in the menu.

🕞 vnv	/n -)	KG5	000 - [Varial	ble/Commen	it]					
🕌 Bro	oject	<u>E</u> dit	Eind/Replace	<u>V</u> iew <u>O</u> nline	Mor	nitor <u>D</u> eb	oug <u>T</u> ools <u>W</u>	<u>/</u> indow	<u>H</u> elp	
100	26	Ω	<u>U</u> ndo	Ctrl+Z		📀 🗟	2 2	$2 \subseteq 2$, въ 🖻 :	×
l fait é	<u>a</u> . 7	2	<u>R</u> edo	Ctrl+Y	_<			fi B		1,
- 	- ·	Ж	Cu <u>t</u>	Ctrl+X					I JUBIA WAAT MICH	
Esc 1	=3 =¥	Ē	<u>C</u> opy	Ctrl+C	ī	(S) (B) sF3 sF4	SF5 SF6 F10	sF7 c	1/4/1/4P1/41 3/04/05/0	6
Project	Wind	E	Paste	Ctrl+V		1 v			Ir	8
Items		\times	<u>D</u> elete	Del		V	ew variable	D Vie	w Device	Ŷ
<u> </u>	vnvr		Select All	Ctrl+A			Variab	le	Туре	*
-	- 6 7	마음	Insert <u>L</u> ine	Ctrl+L		1				
		×	Delete Li <u>n</u> e	Ctrl+D		2				
			Export Variable	es to <u>F</u> ile		4				
			Register U Dev	vice		5				
			Add EXTERNAL	. Variable		7				
			Move Item Up			8				
			Move Item Dov	vn		9				
						10				

(4) Click on 'Yes.'

`

🔥 vnvn - XG5000 - [Variable/Comment]				
Project Edit Eind/Replace View Online Mo	onitor <u>D</u> ebug <u>T</u> ools <u>W</u> indow	Help		
D 🚅 🕼 🖶 🍜 🖄 😓 🍇 🔜 🔜	🛯 🞯 🍓 👂 🔄 🖸	% 🖻 🛍 🗙 📲 🖥	< 🖧 🔀 🛛 👪 🕯	M 🐝 👬 🋱 斗 🔯 😒 🔄 🔍
! = = ● ● ∞ ⊈ = & ⊕ &	K 💷 🛛 🖧 🗗 🗊 🕻) () () () () () () () () () () () () ()	e (]C ()	🗂 🚍 🚝 🚰 🚺 🕼 💷
ESC \$3 \$4 \$\$1 \$\$2 F5 F6 \$F8 \$F9 \$9	1 (\$2) (\$4 (\$2) (\$4 (\$5 \$	3 44 65 18 💼 (🖻 🖾 🖾 F	🖬 🎟 🗹 D Dr Dr Vr 🍕 Q
Project Window · ×	View Variable	ew Device 🛛 🕅 View Flag]	
Eenis ⊡	Variable	Type 🔺 Devie	ce Used	Comment
 Image: NewPLCXGK-CPUH)-offline Image: Watable/Comment Image: Watable/Comment Image: Parameter Image: Basic Parameter Image: Watable/Comment Image: Scan Program Image: Scan Program Image: NewProgram 	1 2 3 4 5 6 7 8 9 10 XG5000 111 12 2 13 14	y register comments in the l	J Devices according to	the special module set in the I/O parameter.
	15	Ye	s No	

(5) The variables are registered as below.

V Vi	ew Variable D Vie	w Device 🕺 🚺	View Flag		
	Variable	Туре 🔺	Device	Used	Comment
1	_01_ERR	BIT	U01.00.0	Г	Analog Input Module: Module Error
2	_01_RDY	BIT	U01.00.F	Г	Analog Input Module: Module Ready
3	_01_CH0_ACT	BIT	U01.01.0	Г	Analog Input Module: CH0 Active
4	_01_CH1_ACT	BIT	U01.01.1	Г	Analog Input Module: CH1 Active
5	_01_CH2_ACT	BIT	U01.01.2	Г	Analog Input Module: CH2 Active
6	_01_CH3_ACT	BIT	U01.01.3		Analog Input Module: CH3 Active
7	_01_CH4_ACT	BIT	U01.01.4	Г	Analog Input Module: CH4 Active
8	_01_CH5_ACT	BIT	U01.01.5	Г	Analog Input Module: CH5 Active
9	_01_CH6_ACT	BIT	U01.01.6	Г	Analog Input Module: CH6 Active
10	_01_CH7_ACT	BIT	U01.01.7	Г	Analog Input Module: CH7 Active
11	_01_CH0_IDD	BIT	U01.10.0	Г	Analog Input Module: CH0 Input Disconnection Flag
12	_01_CH1_IDD	BIT	U01.10.1	Г	Analog Input Module: CH1 Input Disconnection Flag
13	_01_CH2_IDD	BIT	U01.10.2	Г	Analog Input Module: CH2 Input Disconnection Flag
14	_01_CH3_IDD	BIT	U01.10.3	Г	Analog Input Module: CH3 Input Disconnection Flag
15	_01_CH4_IDD	BIT	U01.10.4	Г	Analog Input Module: CH4 Input Disconnection Flag
16	_01_CH5_IDD	BIT	U01.10.5	Г	Analog Input Module: CH5 Input Disconnection Flag
17	_01_CH6_IDD	BIT	U01.10.6	Г	Analog Input Module: CH6 Input Disconnection Flag
18	_01_CH7_IDD	BIT	U01.10.7	Г	Analog Input Module: CH7 Input Disconnection Flag
19	_01_ERR_CLR	BIT	U01.11.0	Г	Analog Input Module: Error Clear Request
20	_01_CH0_HOOR	BIT	U01.20.0	Г	Analog Input Module: CH0 High Out Of Range
21	_01_CH1_HOOR	BIT	U01.20.1	Γ	Analog Input Module: CH1 High Out Of Range
22	_01_CH2_HOOR	BIT	U01.20.2	Г	Analog Input Module: CH2 High Out Of Range
23	_01_CH3_HOOR	BIT	U01.20.3	Г	Analog Input Module: CH3 High Out Of Range

4.6.2 Saving Variables

- (1) The content in the 'View variable' tab can be saved in text files.
- (2) Click on 'Export into text file' in 'Edit' in the menu.
- (3) The content in the 'View variable' tab is saved in a text file.

4.6.3 Viewing Variables in the Program

(1) The example program of XG5000 is as follows.

	M00010	U01.00.F				M00010 (S)
	M00010	M00011	U01.01.0	MOV	U01.02	D00100
			U01.01.1	MOV	U01.03	D00101
			U01.01.2	MOV	U01.04	D00102
			U01.01.3	MOV	U01.05	D00103
			U01.01.4	MOV	U01.06	D00104
			U01.01.5	MOV	U01.07	D00105
			U01.01.6	MOV	U01.08	D00106
			U01.01.7	MOV	U01.09	D00107
37						

(2) Click on 'Variables' in 'View' in the menu. The devices become variables.

0	M00010	_01_RDY			M00010 <s></s>
3	M00010	M00011	_01_CHO_ACT	MOV _01_CH0_DA	T D00100
			_01_CH1_ACT	MOV _01_CH1_DA	T D00101
			_01_CH2_ACT	MOV _01_CH2_DA	T D00102
			_01_CH3_ACT	MOV _01_CH3_DA	T D00103
			_01_CH4_ACT	MOV _01_CH4_DA	T D00104
			_01_CH5_ACT	MOV _01_CH5_DA	T D00105
			_01_CH6_ACT	MOV _01_CH6_DA	T D00106
			_01_CH7_ACT	MOV _01_CH7_DA	T D00107
37					

	M00010	U01.00.F				MOQQ10
0		_01_RDY				
	M00010	M00011 ——↓/↓——	U01.01.0	MOV	U01.02	D00100
3			_01_CHO_ACT		_01_CHO_DAT A	
			U01.01.1	MOV	U01.03	D00101
			_01_CH1_ACT		_01_CH1_DAT A	
			U01.01.2	MOV	U01.04	D00102
			_01_CH2_ACT		_01_CH2_DAT A	
			U01.01.3	MOV	U01.05	D00103
			_01_CH3_ACT		_01_CH3_DAT A	
			U01.01.4	MOV	U01.06	D00104
			_01_CH4_ACT		_01_CH4_DAT A	
			U01.01.5	MOV	U01.07	D00105
			_01_CH5_ACT		_01_CH5_DAT A	
			U01.01.6	MOV	U01.08	D00106
			_01_CH6_ACT		_01_CH6_DAT A	
			U01.01.7	MOV	U01.09	D00107
			_01_CH7_ACT		_01_CH7_DAT A	
						END
37						

(3) Click on 'Devices/Variables' in 'View' in the menu. You can view the device and variable together at a time.

M00010	U01.00.F				M0001
17.1	Analog				
	Input Module:				
	Module				
	Ready				
M00010	M00011	U01.01.0	MOV	1101.02	D0010
	—I/I—		- 1007	001.02	00010
		Input		Input	
		Module:		Module:	
		CH0 Active		CH0 Output	
		U01.01.1	MOV	1101.03	D0010
			MOV	001.03	Duon
		Analog		Analog	
		Module:		Module:	
		CH1 Active		CH1 Output	
		U01.01.2			
			MOV	U01.04	D0010
		Analog		Analog	
		Module		Module:	
		CH2 Active		CH2 Output	
		U01.01.3	MOV	1101.05	DODAG
			MOV	001.00	50010
		Analog		Analog	
		Input Module:		Input Module:	
		CH3 Active		CH3 Output	
		U01.01.4			
			MOV	U01.06	D0010
		Analog		Analog	
		Input		Input	
		CH4 Active		CH4 Output	
		U01.01.5			
			MOV	U01.07	D0010
		Analog		Analog	
		Input		Input	
		CH5 Active		CH5 Output	
		U01.01.6			
			MOV	U01.08	D0010
		Analog		Analog	
		Input		Input	
		Module: CH6 Active		Module: CH6 Output	
				on o output	
		U01.01.7	MOV	U01.09	D0010
		Analog		Analog	
		Input		Input	
		Module:		Module:	
		GH7 Active		CH7 Output	
					END

(4) Click on 'Devices/Comments' in 'View' in the menu. You can view the device and comment together at a time.

M00010	_01_RDY			M00010
17.1	Analog Input Module: Module Ready			s.
M00010	M00011	_01_CH0_ ACT	MOV _01_CH0_ DATA	D00100
	17.1	Analog Input Module: CH0 Active	Analog Input Module: CH0 Output	
			MOV _01_CH1_ DATA	D00101
		Analog Input Module: CH1 Active	Analog Input Module: CH1 Output	
		_01_CH2_ ACT	MOV _01_CH2_ DATA	D00102
		Analog Input Module: CH2 Active	Analog Input Module: CH2 Output	
		_01_CH3_ ACT	MOV _01_CH3_ DATA	D00103
		Analog Input Module: CH3 Active	Analog Input Module: CH3 Output	
		_01_CH4_ ACT	MOV _01_CH4_ DATA	D00104
		Analog Input Module: CH4 Active	Analog Input Module: CH4 Output	
		_01_CH5_ ACT	MOV _01_CH5_ DATA	D00105
		Analog Input Module: CH5 Active	Analog Input Module: CH5 Output	
		_01_CH6_ ACT	MOV _01_CH6_ DATA	D00106
		Analog Input Module: CH6 Active	Analog Input Module: CH6 Output	
		_01_CH7_ ACT	MOV _01_CH7_ DATA	D00107
		Analog Input Module: CH7 Active	Analog Input Module: CH7 Output	
				END

(5) Click on 'Variables/Comments' in 'View' in the menu. You can view the variables and comments together at a time.

Chapter 5 Configuration and Functions of the Internal Memory (XGK)

The analog input module has an internal memory for transmitting and receiving data with the PLC CPU.

5.1 The Configuration of the Internal Memory

This section gives information on the configuration of the internal memory.

5.1.1 Input and Output Areas of A/D Conversion Data

Table 5.1 shows the input and output ranges of the analog input data.

Device allocation	Description	Read/write	Signal direction	Ref.
UXY.00.0	module ERROR flag	Read		
UXY.00.F	module READY flag	Read		
UXY.01.0	channel0 operating flag			
UXY.01.1	channel1 operating flag			
UXY.01.2	channel2 operating flag			
UXY.01.3	channel3 operating flag	Read	$\Delta/D \rightarrow CPU$	
UXY.01.4	channel4 operating flag	Reau		
UXY.01.5	channel5 operating flag			
UXY.01.6	channel6 operating flag			
UXY.01.7	channel7 operating flag			
UXY.02	Channel 0 digital output value			
UXY.03	Channel 1 digital output value			
UXY.04	Channel 2 digital output value			
UXY.05	Channel 3 digital output value	Pood		
UXY.06	Channel 4 digital output value	Nedu	$AD \rightarrow CFO$	
UXY.07	Channel 5 digital output value			
UXY.08	Channel 6 digital output value			
UXY.09	Channel 7 digital output value			
UXY.10.0	channel0 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.10.1	channel1 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.10.2	channel2 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.10.3	channel3 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)	Read		
UXY.10.4	channel4 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)	Reau		
UXY.10.5	channel5 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.10.6	channel6 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.10.7	channel7 disconnection detection flag(1 ~ 5 V OR 4 ~ 20 mA)			
UXY.11.0	Error clear request flag	Write	$CPU \rightarrow A/D$	

Table 5. 11 Input and output ranges of analog input of	data
--	------

Chapter 5 Configuration and Functions of the Internal Memory

Device allocation	Description	Read/write	Signal direction	Ref.
UXY.20.0	CH0 alarm upper limit			
UXY.20.1	CH1 alarm upper limit			
UXY.20.2	CH2 alarm upper limit			
UXY.20.3	CH3 alarm upper limit	Dood		More than OS
UXY.20.4	CH4 alarm upper limit	Read	A/D → CPU	version 1.02
UXY.20.5	CH5 alarm upper limit			
UXY.20.6	CH6 alarm upper limit			
UXY.20.7	CH7 alarm upper limit			
UXY.21.0	CH0 alarm lower limit			
UXY.21.1	CH1 alarm lower limit			
UXY.21.2	CH2 alarm lower limit			
UXY.21.3	CH3 alarm lower limit	Deed		More than OS
UXY.21.4	CH4 alarm lower limit	Read	$AD \rightarrow CPU$	version 1.02
UXY.21.5	CH5 alarm lower limit			
UXY.21.6	CH6 alarm lower limit			
UXY.21.7	CH7 alarm lower limit			

- (1) In device allocation, X means the number of the base where the module is mounted and Y the number of the slot where the module is mounted
- (2) The 'channel1 digital output value' of the analog input module mounted in base 0 slot 4 is expressed as U04.03.

(a) Base number setting range: 0 ~ 7

(b) Slot number setting range: 0 ~ 15

(3) The channel 4 disconnection detection flag of the analog input module mounted in base 0 slot 5 is expressed as U05.10.4.

5.1.2 Operating Parameter Setting Range

Note

The operating parameter of the analog input module can be set through [I/O parameter] of XG5000. XG5000 provides the GUI (Graphical User Interface) type parameter setting of the analog input module in order to enhance the user's convenience of the analog input module.

Table 5.2 shows the operating parameter setting range of the analog input module.

Memory ad	ddress	Description	Deedhurite
Hexadecimal	Decimal	Description	Read/write
0 _H	0	Specifies the channel in use	
1 _H	1	Input voltage/current ranges 1	Read/write
2 _H	2	Input voltage/current ranges 2	
3 _H	3	Output data range	
4 _H	4	Average processing	
5 _H	5	Channel 0 average	
6 _H	6	Channel 1 average	
7 _H	7	Channel 2 average	Dood/urito
8 _H	8	Channel 3 average	Reau/white
9 _H	9	Channel 4 average	
A _H	10	Channel 5 average	
B _H	11	Channel 6 average	
Сн	12	Channel 7 average	
D _H	13	Error code	Read
E _H	14	Hold last value	Read/Write

[Table 5. 2] Operating parameter setting ranges

5.2 A/D Conversion Data Input/Output Ranges

5.2.1 Module READY/ERROR Flag (UXY.00, X: base number, Y: slot number)

(1) UXY.00.F: On when the A/D conversion is ready with the PLC CPU supplied with power or reset, and conducts A/D conversion.

(2) UXY.00.0: the flag displaying errors of the analog input module

5.2.2 Operating channel flag (UXY.01, X: base number, Y: slot number)

This is the area where the operating information for each channel is stored.

Operating channel information Bit ON (1): operating, Bit Off (0): stop

5.2.3 Digital output value (UXY.02 ~ UXY.09, X: base number, Y: slot number)

(1) The A/D converted digital output value is output for each channel in the buffer memory address 2 ~ 9(UXY.02 ~ UXY.09).
(2) The digital output values are saved in binary numbers of 16 bit.

UXY.02 ~ UXY.17

UXY.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 channel# digital output value

Address	Description
2	channel0 digital output value
3	channel1 digital output value
4	channel2 digital output value
5	channel3 digital output value
6	channel4 digital output value
7	channel5 digital output value
8	channel6 digital output value
9	channel7 digital output value

5.2.4 Disconnection detection flag (UXY.10.Z, X: base number, Y: slot number, Z: channel number)

(1) The disconnection detection signals for each input channel is stored in UXY.18.

(2) Each bit is set as 1 when a disconnection is detected for the allocated channel, and turns into 0 when the disconnection is recovered. Each bit can be used for disconnection detection in the user program as the operating conditions.

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
8	-	-	-	-	-	-	-	-	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1	Channel 0
`								~~								/
	0															

	-
BIT	Description
0	Normal
1	Disconnection

5.2.5 Error clear request flag (UXY.11.0, X: base number, Y: slot number)

(1) When there is a parameter setting error, the error code of address 22 is not automatically deleted even if you change the parameter to a correct value. If you turn on the error clear request bit, the error displayed in [System monitor] of XG5000 is deleted. RUN LED also turns to On from Flashing.

(2) You have to use the error clear request flag along with UXY.00.0 for normal operating as shown in Fig. 5.1.

Error clear request flag (UXY.11.0) Bit ON (1): error clear request, Bit Off (0): error clear stand-by

U00.11.0	U00.00.0	U00.11.0
Analog	Analog	Analog
Input	Input	Input
Module:	Module:	Module:
Error Clear	Module	Error Clear
Request	Error	Request

[Fig. 5. 1] How to use the error clear request flag

5.3 Operating Parameter Setting Ranges

Each address of the internal memory is occupied by 1 word, which can be expressed in 16 bit. Each function can be used by setting the 16 bit that comprises the address at 1 when On for each bit and at 0 when Off for each bit.

5.3.1 Designation of the channel to use (address 0)

- (1) You can set whether to allow/block A/D conversion for each channel.
- (2) You can shorten the conversion cycle for channels by blocking conversion of the channel you don't use.
- (3) When no channel is designated for use, all the channels are set as not used.
- (4) Allow/block of A/D conversion is as follows.

Address

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
0	-	-	-	-	-	-	-	-	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1	Channel 0
\																

BIT	Description						
0	Stop						
1	Running						

5.3.2 Output Voltage/Current Ranges (Addresses 1~4)

- (1) You can set the ranges of the analog input voltage/current for each channel.
- (2) When no analog input range is specified, all the channels are set as 4 ~ 20 mA.
- (3) The ranges of the analog input voltage/current are set as follows.

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Channel 3				Channel 2				Channel 1				Channel 0			
B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Channel 7					Chan	nel 6			Char	nel 5			Char	inel 4	

BIT	Description
0000	4 mA ~ 20 mA
0001	0 mA ~ 20 mA
0010	1 V ~ 5 V
0011	0 V ~ 5 V
0100	0 V ~ 10 V
0101	-10 V ~ 10 V

5.3.3 Output Data Ranges (Address 3)

- (1) You can set the ranges of the digital output data for analog input for each channel
- (2) When no output data range is specified, all the channels are set as $0 \sim 16000$.
- (3) The ranges of the digital output data are as follows.

B15 B14	B13 B12	B11 B10	B9 B8	B7 B6	B5 B4	B3 B2	B1 B0
Channel Channel Ch		Channel	Channel	Channel	Channel	Channel	Channel
7	6	5	4	3	2	1	0

	`
BIT	Description
00	0 ~ 16000
01	-8000 ~ 8000
10	Precise Value
11	0 ~ 10000

The precise values have the following digital output ranges for the analog input range.

(a) Current

Analog input Digital output	4~20 mA	0~20 mA
Precise Value	4000 ~ 20000	0~20000

(b) Voltage

Analog input Digital output	-10 ~ 10 V	0 ~ 10 V	0 ~ 5 V	1~5V
Precise Value	-10000 ~ 10000	0 ~ 10000	0 ~ 5000	1000 ~ 5000

5.3.4 Average Processing (Address 4)

(1) This is the area where you designate the method of average processing. Average processing divides into 'number average' and 'time average.'

- (2) When you designate no average processing, all the channels conduct sampling processing.
- (3) The designation of average processing is as follows.

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Address 7	Char	nnel	Char	nnel	Char	nnel	Char	nnel	Cha	nnel	Cha	nnel	Cha	nnel	Cha	nnel
	7		6		5		4		3	3	4	2	1	I	()

BIT	Description
00	Sampling processing
01	Time average
10	Number average
11	Weighted average

5.3.5 Average Value (Addresses 5~12)

- (1) The setting ranges of the time/number/weighted averages are as follows.
 - (a) Time average: 16 ~ 16000(ms)
 - (b) Number average: 2 ~ 64000(number of times)
 - (c) Weighted average: 1 ~ 99(%)
- (2) If you designate a value beyond the range, the address that displays the error code shows the following signals.
 - (a) Beyond the time average range: error code #50
 - (b) Beyond the number average range: error code 60#
 - (c) Beyond the weighted average range: error code 70\$
 - In these cases, the initial value applies to the average processing.
 - (# of the error code means the channel where the error occurred)

(3) The setting of time/number/weighted averages processing values is as follows.

Address 5~12

channel# average constant	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
	—		_	Ι	—	—	—		channel# average constant							

The setting range of the time average: $16 \sim 16000$ The setting range of the number average: $2 \sim 64000$ The setting range of the weighted average: $1 \sim 99$

Address	Description
Address 5	Sets the average processing value of channel 0
Address 6	Sets the average processing value of channel 1
Address 7	Sets the average processing value of channel 2
Address 8	Sets the average processing value of channel 3
Address 9	Sets the average processing value of channel 4
Address 10	Sets the average processing value of channel 5
Address 11	Sets the average processing value of channel 6
Address 12	Sets the average processing value of channel 7

5.3.6 Error Code (Address 13)

- (1) This saves the error code detected by the analog input module.
- (2) The types and descriptions of the errors are as follows.

Add	ress	- 13

B	5 B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
_		—	—		—	-					Error	code			

For the details of the error codes, see the table below.

Error code (Decimal)	Description of the error	Note
0	Normal operation	RUN LED on
11	module error (ASIC RAM or Register Error)	RUN LED flashes every
20	module error (A/D Conversion Error)	0.2 second
40##	module error (The offset value of 4 ~ 20 mA is larger than or equal to the gain value)	
41##	module error (The offset value of 0 ~ 20 mA is larger than or equal to the gain value.)	
42##	module error (The offset value of $1 \sim 5$ V is larger than or equal to the gain value.)	
43##	module error (The offset value of $0 \sim 5$ V is larger than or equal to the gain value.)	RUN LED flashes every
44##	module error (The offset value of $0 \sim 10$ V is larger than or equal to the gain value.)	second
45##	module error (The offset value of -10 \sim 10 V is larger than or equal to the gain value.)	
50##	Beyond the time average setting range	
60##	Beyond the number average setting range	
70##	Beyond the weighted average setting range	

% # of the error code means the channel where the error occurred.

 \times For details of the error codes, see 9.1.

- (3) If there are two or more errors, the module saves the error code that happened first and does not save the following error codes.
- (4) If there is an error, you should use the error clear request flag (see 5.2.5) or turn the power supply Off → On after the error is corrected so that the LED stops flashing and the error code is deleted.

5.3.7 Hold last value (Address 14)

- (1) If you enable this function, when input value exceeds the effective range, holds the last value. For example, in case of 4~20mA, if input signal change from 10mA to 3mA shortly, channels holds output value corresponding to 10mA.
- (2) If this function is enabled, channel indicates digital output value within effective range. For effective range, refer to chapter 2.4 I/O conversion characteristic.
- (3) This function is available in the following input range.
 - (a) 4 ~ 20 mA
 - (b) 0 ~ 20 mA
- (4) Setting is as follows.

Add	ress"14"

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
								С	С	С	С	С	С	С	С
-	-	-	-	-	-	-	-	н	н	н	Н	н	Н	н	Н
								7	6	5	4	3	2	1	0
															/

BIT	Description			
0	Disable			
1	Enable			

Chapter 6 Programming (XGK)

6.1 The Basic Program

- This chapter provides information on how to set the operating conditions for the internal memory of the analog input module.

- The analog input module is mounted in slot 2.

- The input and output occupancy point of the analog input module is 16 points (variable).

- The initial setting condition is one time entry. The setting of the initial value is saved in the internal memory of the analog input module.

6.1.1 An Example of a Program That Uses [I/O Parameter]

y	GF-AD8A (Cur/Volt, 8-CH	I)							? 🛛
XGF-AD8A (Cur/Volt, 8-CH)									
1	Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
	Channel status	Enable	Disable	Disable	Enable	Enable	Disable	Disable	Disable
	Input range	-10~10V	-10~10V	-10~10V	-10~10V	-10~10V	-10~10V	-10~10V	-10~10V
	Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
	Average processing	Weighted-Avr	Sampling	Sampling	Weighted-Avr	Weighted-Avr	Sampling	Sampling	Sampling
	Average value	10	0	0	20	50	0	0	0
	Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
	I~99							ОК	Cancel

6.1.2 An Example of a Program That Uses the PUT/GET Command

				Internal me	mory			
F	continue contract		Slot No.	address	Setting data		i to write	
EX	ecution contact		*	*			- 1	
U02.00.F	P00000	PUT	2	0	h0019	1	Designate channel to use (channel 0, 3, 4).	
Module ready	у	PUT	2	1	h5555	1	Designate input range (-10~10V)	
		PUT	2	2	h5555	1	Designate input range (-10~10V)	
		PUT	2	3	h0000	1	Designate output data range (-192~16191)	
		PUT	2	4	h03C3	1	Designate weighted average process (CH0, 3,	
		PUT	2	5	10	1	Designate weighted average value (CH0)	
		PUT	2	8	20	1	Designate weighted average value (CH3)	
		PUT	2	9	50	1	Designate weighted average value (CH4)	
						P00001	-	
P00001	U02.01.0			MOV	U02.02	000000	CH0 digital output	
	U02.01.3			MOV	U02.05	000003	CH03digital output	
	U02.01.4			MOV	U02.06	000004	CH4 digital output	
	CH operating signal	GET	2	13	M0000	1	1	
						END	1	
						·	-	

6-2 | **LS**is
6.2 Application Program (XGK)

6.2.1 The Program Distinguishing A/D Conversion Values (I/O slot fixed point allocation: 64 points)

(1) System configuration

XGP-	XGK-	XGI-	XGF-	XGQ-	
ACF2	CPUS	D24A	AD 16A	RY2A	

(2) Initial setting

No.	ltem	Initial setting	Internal memory address	Values to write in internal memory
1	Channel in use	channel 0, channel 2, channel 4	0	'h0015' or '21'
2	Input range	-10 ~ 10 V	1,2	'hFFFF' or '65535'
3	Output data range	0~16000	3	'h0000' or '0'
4	Average processing	channel 2: number average channel 4: time average	4	'h0120' or '288'
5	Average	channel 2 number average: 100(times)	7	'h0064' or '100'
		channel 4 time average: 200(ms)	9	'h00C8' or '200'

(3) Program description

- (a) When the digital value of channel 0 is smaller than 12000, contact point 0 (P00080) of the relay output module mounted in slot 2 is On.
- (b) When the digital value of channel 2 is greater than 13600, contact point 2 (P00082) of the relay output module mounted in slot 2 is On.
- (c) When the digital value of channel 4 is greater than or equal to 12000 and smaller than or equal to 13600, contact point 4 (P00086) of the relay output module mounted in slot 2 is On.
- (d) When the digital value of channel 4 is 12800, contact point 5 (P00085) of the relay output module mounted in slot 2 is On.

(4) Program

(a) An example of the program that uses [I/O parameter] setting

Channel status Enable Disable Enable Disable Enable Disable	Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Input range -10-10V 4~20mA -10-10V 4-20mA	Channel status	Enable	Disable	Enable	Disable	Enable	Disable	Disable	Disable
Output type -10000~10000 0~16000 -10000~10000 0~16000 </td <td>Input range</td> <td>-10~10V</td> <td>4~20mA</td> <td>-10~10V</td> <td>-10~10V</td> <td>4~20mA</td> <td>4~20mA</td> <td>4~20mA</td> <td>4~20mA</td>	Input range	-10~10V	4~20mA	-10~10V	-10~10V	4~20mA	4~20mA	4~20mA	4~20mA
Average processing Weighted-Avr Sampling Count-Avr Time-Avr Weighted-Avr Sampling Sampling Sampling Average value 50 0 100 200 50 0 0 0	Output type	-10000~10000	0~16000	-10000~10000	-10000~10000	0~16000	0~16000	0~16000	0~16000
Average value 50 0 100 200 50 0 0 0	Average processing	Weighted-Avr	Sampling	Count-Avr	Time-Avr	Weighted-Avr	Sampling	Sampling	Sampling
	Average value	50	0	100	200	50	0	0	0
Hold last value Disable	Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable

No. of data to read

6-4 **LS**is

(b) An example of the program that uses PUT/GET command

LSis 6-5

6.2.2 The Program That Outputs the Error Code of the Analog Input Module through BCD Display

(1) System configuration

- (2) Initial setting
 - (a) Channel in use: channel 0
 - (b) Analog input current range: DC 4 ~ 20 mA
 - (c) Time average processing: 100 (ms)
 - (d) Digital output data range: 0 ~ 16000

(3) Program description

- (a) Initial setting of A/D conversion when P00000 is On
- (b) The A/D conversion value and error code are respectively saved in D00000 and D00001 when P00001 is On.
- (c) The error code is displayed in the digital BCD display when P00002 is On (P00040 ~ P0004F).
- (4) Program
 - (a) An example of the program that uses [I/O parameter] setting

I/O Parameter Setting - Variable	e allocation			?	×
All Base Set Base					
🖃 🗊 Base 00 : Default 🛛 🔺	Slot Module	Comment Input Filter	Emergency Out	Allocation	
00 : DC 24V INPUT,	0 DC 24V INPUT, 16points	3 Standard [ms] -	P00000 ~ P0000F	
01: XGF-AD8A (Cur	1 XGF-AD8A (Cur/Volt, 8-CH) 💌	· · · ·	-	P00010 ~ P0001F	
02 : RELAY OUTPUT	2 RELAY OUTPUT, 16points	-	Default	P00020 ~ P0002F	
03 : Default	3				
05 : Default	4				
06 : Default	5				
07 : Default	6				
	7				
09 : Default	8		•••••••••••••••••••••••••••••••••••••		
10 : Default	9				
11: Default	10				
Base 01 : Default	11		•		
Base 02 : Default					
Delet	ete Slot Delete Base Base Setti	ng Delete All Details	Print 🔻	OK Cancel]

Chapter 6 Programming (XGK)

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Enable	Disable						
Input range	4~20mA							
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Time-Avr	Sampling						
Average value	100	0	100	200	50	0	0	0
Hold last value	Disable							

Module Execu Ready contac	tion t						Designate Ol to be used
U02.00.F P0000)	PUT	2	0	h0001	1	(CH0)
P00001 U02.01	0			MOV	U02.02	D00000	Store A/D conversion value of CH0 in D0
Channel operating signal		GET	2	25	D00001	1	Store error code in D1
	P00002			BCD	D00001	P0004	Convert data in D1 into
	Convert error code to BCD t	type				END	P4

(b) An example of the program that uses PUT/GET command

U02.00.F	P00000		PUTP	2	0	H0001	1	Designate CH to be used (CH0)
			PUTP	2	1	H0000	1	Designate input range (4~20mA)
			PUTP	2	2	H0000	1	Designate output data range (0~16000)
			PUTP	2	4	H0001	1	Designate average processing (CH0: time
			PUTP	2	5	100	1	Designate average value (CH0: 100)
P00001	U02.01.0				MOV	U02.02	D00000	Store A/D conversion value
			GET	2	13	D00001	1	Store error code of CH0 in D1
		P00002			BCD	D00001	P0004	Convert data in D1 and output to P40~P4F
							END	1

Chapter 7 Configuration and Functions of Global Variables (for XGI/XGR)

7.1 Global Variables (Data Areas)

7.1.1 Configuration of A/D Conversion Data Input and Output Area

Table 7.1 shows the A/D conversion data input and output Area

Global variables	Memory allocation	Description	R/W
_xxyy_ERR	%UXxx.yy.0	Module error flag	
xxyy_RDY	%UXxx.yy.15	Module READY flag	Read
_xxyy_CH0_ACT	%UXxx.yy.16	channel 0 operating flag	
	%UXxx.yy.17	channel 1 operating flag	
_xxyy_CH2_ACT	%UXxx.yy.18	channel 2 operating flag	
_xxyy_CH3_ACT	%UXxx.yy.19	channel 3 operating flag	Deck
_xxyy_CH4_ACT	%UXxx.yy.20	channel 4 operating flag	Read
_xxyy_CH5_ACT	%UXxx.yy.21	channel 5 operating flag	
_xxyy_CH6_ACT	%UXxx.yy.22	channel 6 operating flag	
_xxyy_CH7_ACT	%UXxx.yy.23	channel 7 operating flag	
_xxyy_CH0_DATA	%UWxx.yy.2	channel 0 digital output value (conversion value)	
_xxyy_CH1_DATA	%UWxx.yy.3	channel 1 digital output value (conversion value)	
_xxyy_CH2_DATA	%UWxx.yy.4	channel 2 digital output value (conversion value)	
_xxyy_CH3_DATA	%UWxx.yy.5	channel 3 digital output value (conversion value)	Bood
_xxyy_CH4_DATA	%UWxx.yy.6	channel 4 digital output value (conversion value)	Reau
_xxyy_CH5_DATA	%UWxx.yy.7	channel 5 digital output value (conversion value)	
_xxyy_CH6_DATA	%UWxx.yy.8	channel 6 digital output value (conversion value)	
_xxyy_CH7_DATA	%UWxx.yy.9	channel 7 digital output value (conversion value)	
_xxyy_CH0_IDD	%UXxx.yy.160	channel 0 input disconnection detection flag	
_xxyy_CH1_IDD	%UXxx.yy.161	channel 1 input disconnection detection flag	
_xxyy_CH2_IDD	%UXxx.yy.162	channel 2 input disconnection detection flag	
_xxyy_CH3_IDD	%UXxx.yy.163	channel 3 input disconnection detection flag	Pood
_xxyy_CH4_IDD	%UXxx.yy.164	channel 4 input disconnection detection flag	Neau
_xxyy_CH5_IDD	%UXxx.yy.165	channel 5 input disconnection detection flag	
_xxyy_CH6_IDD	%UXxx.yy.166	channel 6 input disconnection detection flag	
xxyy_CH7_IDD	%UXxx.yy.167	channel 7 input disconnection detection flag	
_xxyy_ERR_CLR	%UXxx.yy.176	Error clear request flag	Write
_xxyy_CH0_HOOR	%UXxx.yy.320	CH0 alarm upper limit	
_xxyy_CH1_HOOR	%UXxx.yy.321	CH1 alarm upper limit	
_xxyy_CH2_HOOR	%UXxx.yy.322	CH2 alarm upper limit	
_xxyy_CH3_HOOR	%UXxx.yy.323	CH3 alarm upper limit	Read
_xxyy_CH4_HOOR	%UXxx.yy.324	CH4 alarm upper limit	Read
_xxyy_CH5_HOOR	%UXxx.yy.325	CH5 alarm upper limit	
_xxyy_CH6_HOOR	%UXxx.yy.326	CH6 alarm upper limit	
_xxyy_CH7_HOOR	%UXxx.yy.327	CH7 alarm upper limit	

[Table 7. 1] A/D conversion data input and output ranges

Chapter 7 Configuration and Functions of Global Variables (XGI/XGR)

_xxyy_CH0_LOOR	%UXxx.yy.336	CH0 alarm lower limit	
_xxyy_CH1_LOOR	%UXxx.yy.337	CH1 alarm lower limit	
_xxyy_CH2_LOOR	%UXxx.yy.338	CH2 alarm lower limit	
_xxyy_CH3_LOOR	%UXxx.yy.339	CH3 alarm lower imit	Dood
_xxyy_CH4_LOOR	%UXxx.yy.340	CH4 alarm lower limit	Read
_xxyy_CH5_LOOR	%UXxx.yy.341	CH5 alarm lower limit	
_xxyy_CH6_LOOR	%UXxx.yy.342	CH6 alarm lower limit	
_xxyy_CH7_LOOR	%UXxx.yy.343	CH7 alarm lower limit	

X Base number yy means the number of the slot where the module is mounted and xx the number of the base where the module is mounted.

7.1.2 How to Use Global Variables

- You can register the global variables either by automatic registration after setting I/O parameters in the project window or registering them simultaneously after setting the I/O parameters.

(1) I/O parameter registration

- You can register the module you want to use in I/O parameter.
- (a) Double click on the I/O parameter in the project window.

(b) Select XGF-AD8A module in the I/O parameter window.

I/O Parameter Setting - Fix	ed alloca	ation(64points)				? 🛛
All Base Set Base						
🖃 🗊 Base 00 : Default	sk	ot Module	Comment	Input Filter	Emergency Out	Allocation
00: Default 01: Default 02: Default 03: Default 04: Default 05: Default 06: Default 07: Default 09: Default 10: Default 11: D	■ 0 1 2 3 4 5 6 7 8 9 9 10 11 11 11 2 0 0		ule oltage, 8-CH) urrent, 8-CH) olated, 4-CH) ur/Volt, 8-CH) Cur/Volt, 16-CH) dule er Module e Module a List	ils !		OK Cancel

(c) Press the [Details] button, set the parameter and choose OK.

XGF-AD8A (Cur/Volt, 8-CH	I)							? 🛽
XGF-AD8A (Cur/Volt, 8-CH)								
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Disable 🔽	Disable						
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable
							OK	Cancel

(d) Select [Y].

- The global variable of the module set in I/O parameter is automatically registered.

XG5000	
?	Automatically register comments in the U Devices according to the special module set in the I/O parameter. The previous comment will be deleted. Continue?
	Yes No

(e) Checking the automatic registration of the global variables

- Double-click on the global/direct variables in the project window.

V GI	obal Variable	Direct Variable Commen	t 🛛 🚺 Flag]				
	Variable Kind	Variable	Туре	Address	Initial	Retain	Used	Comment
37	VAR_GLOBAL	_0000_CH7_DAT	INT	%UW0.0.9		Г	Г	Analog Input Module: CH7 Output
38	VAR_GLOBAL	_0000_CH7_HO	BOOL	%UX0.0.327		Г	Г	Analog Input Module: CH7 High Out Of Range
39	VAR_GLOBAL	_0000_CH7_IDD	BOOL	%UX0.0.167		Г	Г	Analog Input Module: CH7 Input Disconnection Flag
40	VAR_GLOBAL	_0000_CH7_LO	BOOL	%UX0.0.343		Г	Г	Analog Input Module: CH0 Low Out Of Range
41	VAR_GLOBAL	_0000_ERR	BOOL	%UX0.0.0		Г	Г	Analog Input Module: Module Error
42	VAR_GLOBAL	_0000_ERR_CL	BOOL	%UX0.0.176		Г	Г	Analog Input Module: Error Clear Request
43	VAR_GLOBAL	_0000_RDY	BOOL	%UX0.0.15		Г	Г	Analog Input Module: Module Ready
44	VAR_GLOBAL_C	_F0000_AVG_SE	UINT		04	Г	Г	Analog Input Module: Average processing method sett
45	VAR_GLOBAL_C	_F0000_CH0_AV	UINT		05	Г	Г	Analog Input Module: CH0 average value
46	VAR_GLOBAL_C	_F0000_CH1_AV	UINT		06	Г	Г	Analog Input Module: CH1 average value
47	VAR_GLOBAL_C	_F0000_CH2_AV	UINT		07	Г	Г	Analog Input Module: CH2 average value
48	VAR_GLOBAL_C	_F0000_CH3_AV	UINT		08	Г	Г	Analog Input Module: CH3 average value
49	VAR_GLOBAL_C	_F0000_CH4_AV	UINT		09	Г	Г	Analog Input Module: CH4 average value
50	VAR_GLOBAL_C	_F0000_CH5_AV	UINT		10	Г	Г	Analog Input Module: CH5 average value
51	VAR_GLOBAL_C	_F0000_CH6_AV	UINT		11	Г	Г	Analog Input Module: CH6 average value
52	VAR_GLOBAL_C	_F0000_CH7_AV	UINT		12	Г	Г	Analog Input Module: CH7 average value
53	VAR_GLOBAL_C	_F0000_CH_EN	UINT		00	Г	Г	Analog Input Module: Channel enable/disable setting
54	VAR_GLOBAL_C	_F0000_DATA_T	UINT		03	Г	Г	Analog Input Module: Output data type setting
55	VAR_GLOBAL_C	_F0000_ERR_C	UINT		13	Г	Г	Analog Input Module: Error codes
56	VAR_GLOBAL_C	_F0000_HOLD_L	UINT		14	Г	Г	Analog Input Module: Hold last value setting
57	VAR_GLOBAL_C	_F0000_IN_RAN	UINT		01	Г	Г	Analog Input Module: Input current /voltage ranges set
58	VAR_GLOBAL_C	_F0000_IN_RAN	UINT		02	Г	Г	Analog Input Module: Input current /voltage ranges set

(2) Global variables registration

- You can register the global variables of the module set in I/O parameter.
- (a) Double click on the global/direct variables in the project window.

(b) Select [Register Special/Communication Module Variables] in [Edit] of the main menu.

🖣 dfgfdg	g - X	G500	0 - [Glol	bal/Di	rect Va	ariables	5]							
🔛 Projec	t <u>E</u> di	it <u>F</u> ind	d/Replace	<u>V</u> iew	<u>O</u> nline	<u>M</u> onitor	<u>D</u> ebu	ig <u>T</u> ools	s <u>W</u> ir	idow <u>H</u>	elp			
0 🖻	6 -	2 <u>U</u> nd	0				C	Ctrl+Z		<u> </u>	🖻 🛍 🗙	• : } .5 3	* 🚺 🗛	a+0 a+0 191 191
		<u>R</u> ed	0				(Ctrl+Y	- 6	1 8	a. UH ING 📘		רם רם או היה היה	E3
	58	, Cu <u>t</u>					0	Ctrl+X						
ESC 753	K 🖻	<u>C</u> op	у				C	Ctrl+C	6	F7 c3	4/1 4P1 4N1 C4 C5 C6	🖹 🏗 🔁	🖾 🔁	a 🗰
Project Wir	ndi 🖷	<u>P</u> ast	te				0	Ctrl+V				1	1	
Items	$\neg \times$	(<u>D</u> ele	te					Del	•	D Dire	ct Variable Commen	it 🛛 🚺 Flag		
⊡∰ đị	gfc	<u>S</u> ele	ct All				C	Ctrl+A	Ki	nd	Variable	Туре	Address	Initial
	.e ••{	Inse	rt <u>L</u> ine				(Ctrl+L						
	- (🏞	Dele	te Li <u>n</u> e				C	Ctrl+D						
		Exp	ort Variabl	es to <u>F</u>	ile									
	·(Reg	ister Speci	al/Com	municatio	on Module	e Varial	bles						
		Add	EXTERNA	L Variał	ole				-	-				
		Mov	e Item Up						-					
	1	Mov	e Item Do	wn										
						10								
						11								
V Global	Variabl	e D	Direct Variable	Comment	1	Flag								
Va	ariable	Kind	Variat	ole	Туре	Ado	dress	Initial F	letain	Used		Comment		<u>^</u>

	Variable Kind	Variable	Туре	Address	Initial	Retain	Used	Comment	^
37	VAR_GLOBAL	_0000_CH7_DAT	INT	%UW0.0.9		Г	Г	Analog Input Module: CH7 Output	
38	VAR_GLOBAL	_0000_CH7_HO	BOOL	%UX0.0.327		Г	Г	Analog Input Module: CH7 High Out Of Range	
39	VAR_GLOBAL	_0000_CH7_IDD	BOOL	%UX0.0.167		Г	Г	Analog Input Module: CH7 Input Disconnection Flag	
40	VAR_GLOBAL	_0000_CH7_LO	BOOL	%UX0.0.343		Г	Г	Analog Input Module: CH0 Low Out Of Range	
41	VAR_GLOBAL	_0000_ERR	BOOL	%UX0.0.0		Г	Г	Analog Input Module: Module Error	
42	VAR_GLOBAL	_0000_ERR_CL	BOOL	%UX0.0.176		Г	Г	Analog Input Module: Error Clear Request	
43	VAR_GLOBAL	_0000_RDY	BOOL	%UX0.0.15		Г	Г	Analog Input Module: Module Ready	
44	VAR_GLOBAL_C	_F0000_AVG_SE	UINT		04	Г	Г	Analog Input Module: Average processing method sett	
45	VAR_GLOBAL_C	_F0000_CH0_AV	UINT		05	Г	Г	Analog Input Module: CH0 average value	
46	VAR_GLOBAL_C	_F0000_CH1_AV	UINT		06	Г	Г	Analog Input Module: CH1 average value	
47	VAR_GLOBAL_C	_F0000_CH2_AV	UINT		07	Г	Г	Analog Input Module: CH2 average value	
48	VAR_GLOBAL_C	_F0000_CH3_AV	UINT		08	Г	Г	Analog Input Module: CH3 average value	
49	VAR_GLOBAL_C	_F0000_CH4_AV	UINT		09	Г	Г	Analog Input Module: CH4 average value	
50	VAR_GLOBAL_C	_F0000_CH5_AV	UINT		10	Г	Г	Analog Input Module: CH5 average value	
51	VAR_GLOBAL_C	_F0000_CH6_AV	UINT		11	Г	Г	Analog Input Module: CH6 average value	
52	VAR_GLOBAL_C	_F0000_CH7_AV	UINT		12	Г	Г	Analog Input Module: CH7 average value	
53	VAR_GLOBAL_C	_F0000_CH_EN	UINT		00	Г	Г	Analog Input Module: Channel enable/disable setting	
54	VAR_GLOBAL_C	_F0000_DATA_T	UINT		03	Г	Г	Analog Input Module: Output data type setting	

(3) Local variables registration

- You can register the registered global variables that you want to use as the local variables.
- (a) Double-click on the local variables of the program where you want to use the global variables in the scan program below.

(b) Press the right button of the mouse in the right local variable window and select "Add external variable."

	Variable Kind		Variable	Variable		e	Address	Initial Value	Retain	Used
1		-								Г
		\square	<u>U</u> ndo	Ctr	HZ					
		<u></u>	<u>R</u> edo	Ctr	+Υ					
		Ж	Cu <u>t</u>	Ctr	I+X					
		Đ	<u>С</u> ору	Ctr	I+C					
		ß	<u>P</u> aste	Ctr	+V					
		\times	<u>D</u> elete	Del	ete					
		-8	Insert Line	Ctr	1+L					
		*	D <u>e</u> lete Line	Ctr	I+D					
		64	Find de <u>v</u> ice	Ctr	I+F					
		ġġ,	<u>F</u> ind	Ctr	I+K					
		a+0 ₽4	Repl <u>a</u> ce device	Ctr	I+H					
		a+o #4	<u>R</u> eplace	Ctr	(+)					
		£	Find a <u>q</u> ain	Ctrl	+F3					
			E <u>x</u> port into text f	file						
	4		Add EXTER <u>N</u> AL variable							
			<u>O</u> pen program							

(c) Select "all" or "base slot" in View global variables for the local variables that you want to add in the "External variable add window" below.

- View all	
------------	--

🔲 Add I	Add External Variable									
Find Varia	Find Variable:									
⊂ Global '	⊂ Global Variable Item									
Item:	tem: All									
	Unselect All									
	Applicati	Variable Kind	Variable	Туре	Ad 🔼					
1	Ē	VAR_GLOBAL	_0000_CH0_ACT	BOOL	%UXC					
2		VAR_GLOBAL	_0000_CH0_DAT	INT	%UW					
3		VAR_GLOBAL	_0000_CH0_HO	BOOL	%UXC					
4		VAR_GLOBAL	_0000_CH0_IDD	BOOL	%UXC					
5		VAR_GLOBAL	_0000_CH0_LO	BOOL	%UXC					
6		VAR_GLOBAL	_0000_CH1_ACT	BOOL	%UXC					
7		VAR_GLOBAL	_0000_CH1_DAT	INT	%UWI					
8		VAR_GLOBAL	_0000_CH1_HO	BOOL	%UXC					
9		VAR_GLOBAL	_0000_CH1_IDD	BOOL	%UXC					
10		VAR_GLOBAL	_0000_CH1_LO	BOOL	%UXC					
11		VAR_GLOBAL	_0000_CH2_ACT	BOOL	%UXC 🧹					
<					>					

- View each base slot

Add External Variable										
Find Varia	Find Variable:									
Global V		Cancel								
Item:	Item: All									
	All	eral Variable				Unselect All				
	A <mark>Base</mark>	00, Slot00: XGF-/	AD8A (Cur/Volt, 8	-CH)						
1	Г	VAR_GLOBAL	_0000_CH0_/	ACT BOOL	%UXC =					
2		VAR_GLOBAL	_0000_CH0_I	DAT INT	%UW					
3	Γ	VAR_GLOBAL	_0000_CH0_I	HO BOOL	%UXC					
4	Γ	VAR_GLOBAL	_0000_CH0_I	DD BOOL	%UXC					
5	Γ	VAR_GLOBAL	_0000_CH0_I	LO BOOL	%UXC					
6	Γ	VAR_GLOBAL	_0000_CH1_/	ACT BOOL	%UXC					
7		VAR_GLOBAL	_0000_CH1_0	DAT INT	%UWI					
8		VAR_GLOBAL	_0000_CH1_H	HO BOOL	%UXC					
9		VAR_GLOBAL	_0000_CH1_I	DD BOOL	%UXC					
10		VAR_GLOBAL	_0000_CH1_l	LO BOOL	%UXC					
11	Γ	VAR_GLOBAL	_0000_CH2_/	ACT BOOL	%UXC 🧹					
<	1111	·			>					

Add I	Add External Variable								
Find Varia	Find Variable:								
Global		Cancel							
Item:	Item: Base00, Slot00: XGF-AD8A (Cur/Volt, 8-CH)								
						Unselect All			
	Applicati	Variable Kind	Variable	Туре	Ad 🔼				
1		VAR_GLOBAL	_0000_CH0_ACT	BOOL	%UXC				
2		VAR_GLOBAL	_0000_CH0_DAT	INT	%UWI				
3		VAR_GLOBAL	_0000_CH0_HO	BOOL	%UXC				
4		VAR_GLOBAL	_0000_CH0_IDD	BOOL	%UXC				
5		VAR_GLOBAL	_0000_CH0_LO	BOOL	%UXC				
6		VAR_GLOBAL	_0000_CH1_ACT	BOOL	%UXC				
7		VAR_GLOBAL	_0000_CH1_DAT	INT	%UWI				
8		VAR_GLOBAL	_0000_CH1_HO	BOOL	%UXC				
9		VAR_GLOBAL	_0000_CH1_IDD	BOOL	%UXC				
10		VAR_GLOBAL	_0000_CH1_LO	BOOL	%UXC				
11		VAR_GLOBAL	_0000_CH2_ACT	BOOL	%UXC 🧹				
<					>				

(d) The following is an example that the digital input value (_0000_CH0_DATA) of "base00 slot00" in View global variables.

(4) How to use local variables in the program

- This section describes how to use the added global variables in the local program.

- The following is an example in which the conversion value of channel 0 of the A/D conversion module is brought to %MW0.

(a) Double click on the variable before IN in the area where the A/D conversion data is read as %MW0 by using the MOVE function below and invoke the variable selection window.

(b) Choose the global variable as the variable type in the variable selection window and then the corresponding base in the View global variable item (base 0, slot 0).

vanab	le List				Cancel
OLoc					
Global	Variable				INEW Variable
List:	All			~	E dit Variable.
	All				Delete Variab
	Base00, Slot00: XG	F-AD8A (Cur/Volt, 8-CH)			
	Variable Kind	Variable	Туре	Addre 📥	
1	VAR_GLOBAL	_0000_CH0_ACT	BOOL	%UX0.0.16	
2	VAR_GLOBAL	_0000_CH0_DATA	INT	%UW0.0.2	
3	VAR_GLOBAL	_0000_CH0_HOOR	BOOL	%UX0.0.32	
4	VAR_GLOBAL	_0000_CH0_IDD	BOOL	%UX0.0.16	
5	VAR_GLOBAL	_0000_CH0_LOOR	BOOL	%UX0.0.33	
6	VAR_GLOBAL	_0000_CH1_ACT	BOOL	%UX0.0.17	
7	VAR_GLOBAL	_0000_CH1_DATA	INT	%UW0.0.3	
8	VAR_GLOBAL	_0000_CH1_HOOR	BOOL	%UX0.0.32	
9	VAR_GLOBAL	_0000_CH1_IDD	BOOL	%UX0.0.16	
	VAD OLODAL	0000 CH1 LOOR	BOOL	%UX0.0.33	
10	VAR_GLUBAL	_0000_0111_20011			
10 11	VAR_GLOBAL	_0000_CH2_ACT	BOOL	%UX0.0.18	

(c) Double-click on _0000_CH0_DATA that corresponds to the A/D conversion data of channel 0 and click on [OK].

Select	Variable				?			
Variable:	_0000_CH0_DATA		Add to direct	variable comment	ОК			
Variable	Variable List							
ULUCa	Uccar variable Grubbar variable O Flag							
⊂ Global V	/ariable							
List	Base00, Slot00: XGF	-AD8A (Cur/Volt, 8-CH)		~	E dit Variable			
					Delete Variable			
	Variable Kind	Variable	Туре	Addre				
1	VAR_GLOBAL	_0000_CH0_ACT	BOOL	%UX0.0.16				
2	VAR_GLOBAL	_0000_CH0_DATA	INT	%UW0.0.2				
3	VAR_GLOBAL	_0000_CH0_HOOR	BOOL	%UX0.0.32				
4	VAR_GLOBAL	_0000_CH0_IDD	BOOL	%UX0.0.16				
5	VAR_GLOBAL	_0000_CH0_LOOR	BOOL	%UX0.0.33				
6	VAR_GLOBAL	_0000_CH1_ACT	BOOL	%UX0.0.17				
7	VAR_GLOBAL	_0000_CH1_DATA	INT	%UW0.0.3				
8	VAR_GLOBAL	_0000_CH1_HOOR	BOOL	%UX0.0.32				
9	VAR_GLOBAL	_0000_CH1_IDD	BOOL	%UX0.0.16				
10	VAR_GLOBAL	_0000_CH1_LOOR	BOOL	%UX0.0.33				
11	VAR_GLOBAL	_0000_CH2_ACT	BOOL	%UX0.0.18				
12 <	IVAR GLOBAL		INT	%⊥IW/0 0 / ¥				

(d) The following is the result of adding the global variable corresponding to the A/D conversion data of channel 0.

7.2 PUT/GET Function Block Area (Parameter Area)

7.2.1 PUT/GET Function Block Area (Parameter Area)

Table 7.2 shows the operating parameter setting area of the analog input module.

Global variables	Designation	Command
_Fxxyy_AVG_SEL1	Average processing method	
_Fxxyy_CH_EN	Channel to use	FOT
_Fxxyy_CH0_AVG_VAL	channel 0 average	
_Fxxyy_CH1_AVG_VAL	channel 1 average	
_Fxxyy_CH2_AVG_VAL	channel 2 average	
_Fxxyy_CH3_AVG_VAL	channel 3 average	
_Fxxyy_CH4_AVG_VAL	channel 4 average	FUI
_Fxxyy_CH5_AVG_VAL	channel 5 average	
_Fxxyy_CH6_AVG_VAL	channel 6 average	
_Fxxyy_CH7_AVG_VAL	channel 7 average	
_Fxxyy_DATA_TYPE	Output data type	
_Fxxyy_IN_RANGE1	Input current/voltage range 1	PUT
_Fxxyy_IN_RANGE2	Input current/voltage range 2	
_Fxxyy_ERR_CODE	Error code	GET
_Fxxyy_HOLD_LV	Hold last value	PUT

[Table 7. 2] Operating parameter setting ranges

X In device allocation, xx and yy respectively mean the numbers of the base and slot where the module is mounted.

7.2.2 PUT/GET Commands

(1) PUT Command

Function block	Description			
PUT BOOL REQ DONE BOOL USINT BASE STAT UINT USINT SLOT UINT MADDR *ANY DATA	Input REQ : performs function when 1 BASE : designates base location SLOT : designates slot location MADDR : module address DATA : data to save in module Output DONE : outputs 1 when normally functioning STAT : error information			

*ANY: WORD, DWORD, INT, USINT, DINT, UDINT types are available of ANY types.

Functions

Writes data from the designated special module.

Function block	ANY type	Function
PUT_WORD	WORD	Saves WORD data in the designated module address (MADDR).
PUT_DWORD	DWORD	Saves DWORD data in the designated module address (MADDR).
PUT_INT	INT	Saves INT data in the designated module address (MADDR).
PUT_UINT	UINT	Saves UINT data in the designated module address (MADDR).
PUT_DINT	DINT	Saves DINT data in the designated module address (MADDR).
PUT_UDINT	UDINT	Saves UDINT data in the designated module address (MADDR).

(2) GET command

Function block	Description				
	Input				
GET BOOL – REQ DONE – BOOL USINT – BASE STAT – UINT USINT – SLOT DATA – *ANY	REQ: performs function when 1BASE: designates base locationSLOT: designates slot locationMADDR: module address512(0x200) ~ 1023(0x3FF)				
UINT — MADDR	Output DONE : outputs 1 when normally functioning STAT : error information DATA : data read from module				

*ANY: WORD, DWORD, INT, USINT, DINT, UDINT types are available of ANY types.

Functions

Reads data from the designated special module.

Function block	ANY type	Function
GET_WORD	WORD	Reads WORD data from the designated module address (MADDR).
GET_DWORD	DWORD	Reads DWORD data from the designated module address (MADDR).
GET_INT	INT	Reads INT data from the designated module address (MADDR).
GET_UINT	UINT	Reads UINT data from the designated module address (MADDR).
GET_DINT	DINT	Reads DINT data from the designated module address (MADDR).
GET_UDINT	UDINT	Reads UDINT data from the designated module address (MADDR).

7.2.3 Examples of Use of PUT/GET Commands

(1) Designation of channel to use

- (a) You can set Allow/block of A/D conversion for each channel.
- (b) You can shorten the conversion cycle for each channel by blocking conversion of the unused channel.
- (c) When no channel is designated for use, all channels are blocked from use.
- (d) Allow/block of A/D conversion is as follows.

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	BO	
								CH								
_	_	-	-	-	-	-	_	7	6	5	4	3	2	1	0	

Bit	Description
0	Stop
1	Operating
6#0002 · 0000 000	0 0000 0011

16#0003 : 0000 0000 0000 0011

CH3, CH2, CH1, CH0

(e) The values set between B2 ~ B15 will be ignored.

- (f) The illustration on the right side is an example of designating channels 0~1 as the use channel of the analog input module.
- (2) Designation of Input Voltage/Current Ranges
 - (a) You can designate the analog input voltage/current ranges for each channel.
 - (b) When no analog input range is designated, all channels are set as $1 \sim 5 V (4 \sim 20 \text{ mA})$.
 - (c) The setting of analog input voltage/current ranges is as follows.
 - The following example is when channels 0~1 are 1~5V and channels 2~3 are 0~10V.

B15 B	14 B13 B12	B11 B10	B9 B8	B7	B6 B	5 B4	B3 E	32 B1	B0			N	ST2
Cł	nannel 3	Chan	nel 2	(Channel	1	Cł	nannel ()		±Q ├───	PUT_ REQ	WORD DONE
	BIT		Rar	nges						()	BASE	STAT
	0000		4 mA ~	20 n	nΑ								
	0001		0 mA ~ 20 mA							1	1	SLOT	
	0010		1 V ·	~5V						5000	1 14		
	0011		0 V ·	~5V						RAN	GE1 :	MADD	
	0100		0 V ~	· 10 \	/							<u>г. п</u>	
	0101		-10 V	~ 10	V					16#4	4422 -	DATA	
	16#4422	: 0100 01	00 0010	001	0					Set	input		
	ch 3. ch 2. ch 1. ch 0							range	;				

(3) Output data range setting

(a) You can designate the digital output data ranges for analog input for each channel.

(b) When no analog input range is designated, all channels are set as $0 \sim 16000$.

(c) The setting of digital output data ranges is as follows.

INST2 PUT. REQ _WORD DONE BASE STAT SLOT MADD R DATA

The precise value has the following digital output ranges for the analog input range.

1) Current

Analog input Digital output	4~20 mA	0~20 mA
Precise Value	4000 ~ 20000	0 ~ 20000

2) Voltage

Analog input Digital output	-10 ~ 10 V	0 ~ 10 V	0 ~ 5 V	1 ~ 5 V
Precise Value	-10000 ~ 10000	0 ~ 10000	0 ~ 5000	1000 ~ 5000

(4) Average processing setting

- (a) You can set Allow/block of average processing for each channel.
- (b) When no average processing is designated, all channels conduct sampling processing.
- (c) The designation of average processing is as follows.
- (d) The following illustration is an example when time average is used for channel 1.

(5) Designation of average values

(a) The initial value of the average designation range is 0.

(b) The setting range of the average designation is as follows.

Average	Range
Time average	16 ~ 5000(ms)
Count average	2 ~ 64000 (times)
Weighted	1 ~ 99(%)
average	

- (c) When a value beyond the range is designated, the error number is displayed in the error code display (_F0001_ERR_CODE).
- Then the A/D conversion value remains the previous data. (# refers to the channel where the error occurred)
- (d) The setting of the average is as follows.

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
—	—	Ι	—	-	—	_	_			Cha	annel i	# aver	rage		

Time average setting range is $16 \sim 16000$ Count average setting range is $2 \sim 64000$ Weighted average setting range is $1 \sim 99$

% In device allocation, xx and yy respectively mean the numbers of the base and slot where the module is mounted.

Address	Description
Address 5	Designates the average processing value of channel 0
Address 6	Designates the average processing value of channel 1
Address 7	Designates the average processing value of channel 2
Address 8	Designates the average processing value of channel 3
Address 9	Designates the average processing value of channel 4
Address 10	Designates the average processing value of channel 5
Address 11	Designates the average processing value of channel 6
Address 12	Designates the average processing value of channel 7

Note

When you designate the time/number average processing values, set average processing as 'Allow' in advance. As for average processing, choose between time average and number average.

INST3

DATA

DATA

REQ

(9) Error code

- (a) Saves the error code detected in the analog input module.
- (b) The types and descriptions of errors are as follows.
- (c) The following illustration is an example of reading the error code.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

	Error code			- REQ	WORD DONE
Error code (Decimal)	Description of the error	Note	0	-BASE	STAT
0	Normal operation	RUN LED on	1	SLOT	DATA
11	module error (ASIC RAM or Register Error)	RUN LED flashes	_F0001_ERR	HIDD.	
20	module error (A/D Conversion Error)	every 0.2 second	LCODE	R	
40##	module error (The offset value of 4 ~ 20 mA is larger than or equal to the gain value)	I			
41##	module error (The offset value of 0 ~ 20 mA is larger than or equal to the gain value.)				
42##	module error (The offset value of 1 ~ 5 V is larger than or equal to the gain value.)				
43##	module error (The offset value of 0 ~ 5 V is larger than or equal to the gain value.)	RUN LED flashes			
44##	module error (The offset value of 0 ~ 10 V is larger than or equal to the gain value.)				
45##	module error (The offset value of -10 ~ 10 V is larger than or equal to the gain value.)				
50##	Beyond the time average setting range				
60##	Beyond the number average setting range				
70##	Beyond the weighted average setting range				

of the error code means the channel where the error occurred.

X For details of the error codes, see 9.1.

- (d) If there are two or more errors, the module saves the error code that happened first and does not save the following error codes.
- (e) If there is an error, you should use the error clear request flag (see 5.2.5) or turn the power supply Off \rightarrow On after the error is corrected so that the LED stops flashing and the error code is deleted.

Chapter 8 Programming (XGI, XGR)

8.1 The Basic Program (XGI/XGR)

- This chapter provides information on how to set the operating conditions for the internal memory of the analog input module.

- The analog input module is mounted in slot 2.

- The input and output occupancy point of the analog input module is 16 points (variable).

- The initial setting condition is one time entry. The setting of the initial value is saved in the internal memory of the analog input module.

8.1.1 An Example of a Program That Uses [I/O Parameter]

I/O Parameter Setting - Fixed allocation(64points)								?×	
	All Base Set Base								
	🖃 🔟 Base 00 : Default	^	Slot	Module	Comment	Input Filter	Emergency Out	Allocation	
	00 : Default		0						
	01 : Default		1			0	0		
	02 : XGF-AD8A (Cur		2	XGF-AD8A (Cur/Volt, 8-CH) 🔻		-	-		
	03 : Default		3						
	04 : Default		4						
	05 : Default		5						
	00 : Default		6						
	08 : Default		7						
	09 : Default								
	10 : Default								
	11 : Default	-1	10						
	🖻 🔟 Base 01 : Default		11						
	🖻 🛅 Base 02 : Default		<u> </u>						
	🗄 🛅 Base 03 : Default	\mathbf{v}							
	<								
•			,						
	(Dele	te Slot	Delete Base Base Settin	g Delete All C	Details [Print 🔻	OK Can	cel

Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Enable	Enable	Enable	Enable	Disable	Disable	Disable	Disable
Input range	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA	4~20mA
Output type	4000~20000	4000~20000	4000~20000	4000~20000	0~16000	0~16000	0~16000	0~16000
Average processing	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling	Sampling
Average value	0	0	0	0	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable

Chapter 8 Programming (XGI, XGR)

8-2 | **LS**is

•

	Execution										
2002 DDV	contact		INSTI SUT WOOD			INC TUT	ST2				
						REQ	DONEL				
		0	BASE STAT		0 -	BASE	STAT-				
		2	SLOT		2.	SLOT					
		50000 CH		500							
		_FUUU2_CH_ EN	MADD R	_F00 RA	JUZ_TN_ INGE1 -	MADD					
		16#000E	DATA	16‡	#3210 -	DATA					
			INST4			1 NS	ST5				
			PUT_WORD			PUT_	WORD				
			REQ DONE			REQ	DONEL				
		0	BASE STAT		0 -	BASE	STAT				
		2	SLOT		2 .	SLOT					
		50002 DAT		500	00 400						
		A_TYPE	MADD	_FU0	SEL -	MADD R	 				
		16#1210	DATA	16‡	#3210 -	DATA					
		;	INST6			TINS	ST7			INS	T8
			PUT_WORD			PUT_	WORD			PUT_	WORD
	I		REQ DONE			REQ	DONE			REQ	DONE
		0	BASE STAT		ο.	BASE	STAT		0	BASE	STAT-
		1	SLOT		1 -	SLOT			1	SLOT	
		_F0002_CH1 _AVG_VAL	MADD	_F00 _AV	IO2_CH2	MADD		_	F0002_CH3 _AVG_VAL	MADD	
		5000	DATA	Ę	500 -	DATA			100	DATA	

8.1.2 An Example of a Program That Uses the PUT/GET Command

8-4 | **LS**is

8.2 Application Program (XGI/XGR)

8.2.1 The Program Distinguishing A/D Conversion Values (I/O slot fixed point allocation: 64 points)

(1) System configuration

XGP-	XGI-	XG1-	XGF-	XGQ-
ACF2	CPUU	D24A	AD16A	RY2A

(2) Initial setting

No.	ltem	Initial setting	Internal memory address	Values to write in internal memory
1	Channel in use	channel 0, channel 2, channel 3	0	'h000D' or '13'
2	Input range	-10 ~ 10 V	1	'h5505' or '21765'
3	Output data range	-10000 ~ 10000	2	'h0000' or '0'
4 Average processing		Channel 0,2,3(weighted, number, time)	3	'h1204' or '4612'
		Channel 0 weighted average: 50(%)	4	'h0032' or '50'
5	Average	Channel 2 number average: 100(times)	6	'h0064' or '100'
		Channel 3 time average: 200(ms)	7	'h00C8' or '200'

(3) Program description

- (a) When the digital value of channel 0 is smaller than 12000, contact point 0 (%QX0.2.0) of the relay output module mounted in slot 2 is On.
- (b) When the digital value of channel 2 is greater than 13600, contact point 2 (%QX0.2.2) of the relay output module mounted in slot 2 is On.
- (c) When the digital value of channel 3 is greater than or equal to 12000 and smaller than or equal to 13600, contact point 4 (QX0.2.4) of the relay output module mounted in slot 2 is On.
- (d) When the digital value of channel 3 is 13600, contact point 5 (QX0.2.5) of the relay output module mounted in slot 2 is On.

(4) Program

(a) An example of the program that uses [I/O parameter] setting

I/O Parameter Setting - Fixed alloc	ation(64points)				? 🔀		
All Base Set Base							
🖃 🗊 Base 00 : Default 🛛 📃 S	Slot Module	Comment	Input Filter	Emergency Out	Allocation		
00 : DC 24V INPUT,	0 DC 24V INPUT, 16points		3 Standard [ms]	-			
01:XGF-AD8A (Cur	1 XGF-AD8A (Cur/Volt, 8-CH)		-	-			
02 : RELAY OUTPUT	2 RELAY OUTPUT, 16points	/	-	Default			
03 : Default	3						
04 : Default	4			•			
06 : Default	5			•			
07 : Default	6						
08 : Default	7						
09 : Default	8						
10 : Default	9						
11 : Default	10						
🖶 🗇 Base 01 : Default	11						
⊕ ∰ Base 02 : Default	<u> </u>						
🗈 🛅 Base 03 : Default 🛛 🗸							
Delete Sl	Delete Slot Delete Base Base Setting Delete All Details Print ▼ OK Cancel						

iF-AD8A (Cur/Volt, 8-CH)	2							
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Enable	Disable	Enable	Enable	Disable	Disable	Disable	Disable
Input range	-10~10V	4~20mA	-10~10V	-10~10V	4~20mA	4~20mA	4~20mA	4~20mA
Output type	-10000~10000	0~16000	-10000~10000	-10000~10000	0~16000	0~16000	0~16000	0~16000
Average processing	Weighted-Avr	Sampling	Count-Avr	Time-Avr	Sampling	Sampling	Sampling	Sampling
Average value	50	0	100	200	0	0	0	0
Hold last value	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable

(b) An example of the program that uses $\ensuremath{\mathsf{PUT/GET}}$ command

LS 15 | 8-7

8.2.2 The Program That Outputs the Error Code of the Analog Input Module through BCD Display

(1) System configuration

- (2) Initial setting
 - (a) Channel in use: channel 0
 - (b) Analog input current range: DC 4 ~ 20 mA
 - (c) Time average processing: 100 (ms)
 - (d) Digital output data range: 0 ~ 16000
- (3) Program description
 - (a) When %IX.0.0.1 is On, the A/D conversion value and error code are respectively saved as conversion value and error code.
 - (b) When %IX.0.0.2 is On, the error code is output in the digital BCD display (%QW.0.3.0).
- (4) Program
 - (a) An example of the program that uses [I/O parameter] setting

I/O Parameter Setting - Fixed allocation(64points)							? 🛛
All Base Set Base							
🖃 🗊 Base 00 : Default	~	Slot	Module	Comment	Input Filter	Emergency Out	Allocation
00 : DC 24V INPUT,		0	DC 24V INPUT, 16points		3 Standard [ms]	-	
01 : XGF-AD8A (Cur		1	XGF-AD8A (Cur/Volt, 8-CH)		-	-	
02 : RELAY OUTPUT		2	RELAY OUTPUT, 16points		-	Default	
03 : Default		3					
04 : Default		4					
06 : Default		5					
07 : Default		6					
08 : Default		7					
09 : Default		8				••••••	
10 : Default		9					
11 : Default	-11	10				••••••	
🕀 🗂 Base 01 : Default		11					
Base 02 : Default		H					
H Base 03 : Default	~						
<							
	Delete	e Slot	Delete Base Base Settin	g Delete All D	etails	<u>Print</u>	OK Cancel

XGF-AD8A (Cur/Volt, 8-CH)							?
XGF-AD8A (Cur/Volt, 8-CH)	2							
Parameter	CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7
Channel status	Enable	Disable						
Input range	4~20mA							
Output type	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000	0~16000
Average processing	Time-Avr	Sampling						
Average value	100	0	100	200	0	0	0	0
Hold last value	Disable							
4~10000								Consel
4 10000								Lancel

(b) An example of the program that uses [I/O parameter] setting

Chapter 9 Failure Check

This chapter provides information on the errors and failure check of the analog input module.

9.1 Error Code

Table 9.1 shows the errors that occur when the RUN LED of the analog input module flashes.

The error code detected in the analog input module is saved in address 25.

Error code (Decimal)	Description of the error	RUN LED			
10	module error (ASIC Reset Error)				
11	module error (ASIC RAM or Register Error)	every 0.2 second			
20	module error (A/D Conversion Error)	every 0.2 Second			
40#	module error (The offset value of 4 ~ 20 mA is larger than or equal to the gain value)				
41#	module error (The offset value of 0 ~ 20 mA is larger than or equal to the gain value.)				
42#	module error (The offset value of 1 ~ 5 V is larger than or equal to the gain value.)				
43#	module error (The offset value of 0 ~ 5 V is larger than or equal to the gain value.)	RUN LED flashes			
44#	module error (The offset value of 0 ~ 10 V is larger than or equal to the gain value.)	every second			
45#	module error (The offset value of -10 ~ 10 V is larger than or equal to the gain value.)				
50#	Beyond the time average setting range				
60#	Beyond the number average setting range				
70#	Beyond the weighted average setting range				

[Table 9. 1] Error code list

Note

(1) # of the error code means the channel where the error occurred.

(2) If there are two or more errors, the module saves the error code that happened first and does not save the following error codes.

(3) If you use an error clear request flag, you can delete the error code in the sequence program (see 5.2.5).

9.2 Failure Check

9.2.1 RUN LED Flashes.

Error code (Decimal)	Description of the error	Action		
40#				
41#				
42#		Hardwara failura of analag input madula		
43#	Module offset/gain error	 Switch the power on/off. If the flashing occurs again, a module failure is suspected. Contact us. 		
44#				
45#				
50#	Beyond the time average setting range	Change the set value to 4 ~ 16000.		
60#	Beyond the number average setting range	Change the set value to 2 ~ 64000.		
70#	Beyond the weighted average setting range	Change the set value to $1 \sim 99$.		

% # of the error code means the channel where the error occurred.

9.2.2 RUN LED is Off.

9.2.3 CPU Module Cannot Read A/D Conversion Values.

9.2.4 The Analog Input Value Inconsistent with Digital Output Value

9.2.5 Hardware Failure of the Analog Input Module

Switch on/off the power. If it occurs again, a module failure is suspected. Contact us.

9.2.6 Check of Analog Input Module Status by XG5000 System Monitor

You can check the module type, information, OS version and status of the analog input module by system monitor of XG5000.

- (1) Sequence
 - You can do the job either ways.
 - (a) [Monitor] -> [System monitor] -> press right button of mouse on module figure -> [module information]
 - (b) [Monitor] -> [System monitor] -> double-click on module figure

(2) Module information

- (a) Module type: displays the information of the currently mounted module.
- (b) Module information: displays the OS version information of the analog input module.
- (c) OS version: displays the data when the analog input module OS was configured.
- (d) Module status: displays the current error code (for details, see Table 7.1).

Appendix 1 Glossary

The following glossary covers the manual and the entire analog module.

A/D converter: converts the analog input signals into digital values in proportion to the magnitude of the signals.

■ Analog input module: The module that has a circuit which converts analog voltage/current input signals into digital values. It has 14 otr16 bit resolutions according to the converter.

Channel: Related to the terminals of the analog input/output module, each channel is linked to various current/voltage input and output devices and has the functions of data and check.

Conversion time: The time it takes for the analog input module samples and converts the analog signals and then for the processor in the module to receive the converted digital values. In addition, this is the time for the digital values from the processor in the module to be converted into analog output signals and transmitted to the output channel.

D/A converter: Performs the function of producing analog voltage and current signals of continuous size in proportion to the digital value.

- Full scale: The magnitude of voltage and current at which normal function is performed.
- Full scale error: The difference between an ideal analog conversion value and real analog conversion value on the graph.
- Full scale range: The difference between the maximum and minimum of the analog inputs.
- LSB (Least Significant Bit): The minimum of the unit bit line.

Linearity error: The analog inputs and outputs being related to continuous voltage/current and digital values, ideal inputs and outputs are defines as a straight line within minimum 1LSB of voltage/current. The difference between an ideal analog conversion value and real analog conversion value on the graph is referred to as a linearity error.

- Multiplexer: The switching circuit where multiple circuits share a single A/D converter or D/A converter.
- Analog output module: The module that has an output module which converts the analog DC voltage or current signals in proportion to the digital values transmitted from the processor to the module.
- Resolution: The minimum value that can be recognized in the measure. It is expressed in engineering units (1mV or number of Bits) in general. That is, 14 Bit is capable of 16383 types of outputs.
- Filter: The device that softens the change of digital conversion values of an analog circuit produced from a sudden change of external noise or inputs. It has two methods of S/W and H/W filters.
- Precision: The maximum deviation of the ideal output voltage and current against the pre-output range. With respect to the outputs, it is expressed as the maximum difference between the ideal value in the whole input range and the digital conversion value of the input signals. It is mainly expressed in percentage to the full scale. The error includes the gain, offset and linearity errors.
- Output precision: The difference between an real analog output voltage/current value and ideal conversion value on the graph. It is expressed against the full scale, and the error includes the gain, offset and linearity errors. It is expressed respectively in room temperature (25°C) and use temperature ranges.

Appendix 2 Dimension

Appendix 2 Dimension

Unit : 께

Warranty

1. Warranty Period

The product you purchased will be guaranteed for 18 months from the date of manufacturing.

2. Scope of Warranty

Any trouble or defect occurring for the above-mentioned period will be partially replaced or repaired. However, please note the following cases will be excluded from the scope of warranty.

- (1) Any trouble attributable to unreasonable condition, environment or handling otherwise specified in the manual,
- (2) Any trouble attributable to others' products,
- (3) If the product is modified or repaired in any other place not designated by the company,
- (4) Due to unintended purposes
- (5) Owing to the reasons unexpected at the level of the contemporary science and technology when delivered.
- (6) Not attributable to the company; for instance, natural disasters or fire
- 3. Since the above warranty is limited to PLC unit only, make sure to use the product considering the safety for system configuration or applications.

Environmental Policy

LS Industrial Systems Co., Ltd supports and observes the environmental policy as below.

LSIS values every single customers. Quality and service come first at LSIS. Always at your service, standing for our customers.

http://www.lsis.com

■ HEAD OFFICE
LS tower, Hogye-dong, Dongan-gu, Anyang-si, Gyeonggi-do 1026-6,
Korea <u>http://eng.lsis.biz</u>
Tel : (82-2)2034-4870/Fax : 82-2-2034-4648 e-mail : <u>cshwang@lsis.biz</u>
LSIS Tokyo Office _ Tokyo, Japan
Address: 16FL. Higashi-Kan. Akasaka Twin Tower 17-22,
Akasaka.Monato-ku Tokyo 107-8470. Japan
Tel : 81-3-3582-9128/Fax : 81-3-3582-2667 e-mail : <u>ischuna@lsis.biz</u>
■ LSIS (ME) FZE _ Dubai, U.A.E.
Address : Jafza View Tower Lob 19, Room 205 Along Sheikh Zayed
Road Jebel Aali Free Zone Dubai, United Arab Emirates
Tel : 971-4-886-5360/Fax : 971-4-886-5361 e-mail : jungyongl@lsis.biz
LSIS Shanghai Office _ Shanghai, China
Address : Room E-G. 12FL Hiamin Empire Plaza. No.726. West.
Yan'an Road Shanghai 200050. P.R. China e-mail : liyong@lsis.com.cn
Tel : 86-21-5237-9977(609)/Fax : 89-21-5237-7189
LSIS Beijing Office _ Beijing, China
Address : B-Tower 17FL. Beijing Global Trade Center B/D. No. 36.
East BeisanHuan-Road. DongCheng-District. Beijing 100013. P.R. China
Tel : 86-10-5825-6027(666)/Fax : 86-10-5825-6028 e-mail : <u>xunmj@lsis.com.cn</u>
LSIS Guangzhou Office _ Guangzhou, China
Address : Room 1403.14FL. New Poly Tower.
2 Zhongshan Liu Road.Guangzhou.P.R China
Tel : 86-20-8328-6754/Fax : 86-20-8326-6287 e-mail : <u>chenxs@lsis.com.cn</u>

- LSIS Chengdu Office _ Chengdu, China
 Address : 12FL. Guodong Buiding. No.52 Jindun
 Road Chengdu.610041. P.R. China
 Tel : 86-28-8612-9151(9226)/Fax : 86-28-8612-9236 e-mail : comysb@lsis.biz
- LSIS Qingdao Office _ Qingdao, China Address : YinHe Bldg. 402 Room No. 2P Shandong Road, Qingdao-City,Shandong-province 266071, P.R. China Tel : 86-532-8501-6068/Fax : 86-532-8501-6057 e-mail : <u>wangzy@lsis.com.cn</u>

■ LSIS Europe B.V., Netherlands Address : 1st. Floor, Tupolevlaan 48, 1119NZ, Schiphol-Rijk, The Netherlands Tel : +31 (0)20 654 1420/Fax : +31 (0)20 654 1429 e-mail : junshickp@lsis.biz

- Wuxi LSIS Co., Ltd _ Wuxi, China Address : 102-A. National High & New Tech Industrial Development Area. Wuxi. Jiangsu. 214028. P.R. China Tel : 86-510-8534-6666/Fax : 86-510-8534-4078 e-mail : <u>caidx@lsis.com.cn</u>
 Dalian LSIS Co., Ltd. _ Dalian, China
 - Address : No. 15. Liaohexi 3-Road. Economic and Technical Development zone. Dalian 116600. China Tel : 86-411-273-7777/Fax : 86-411-8730-7560 e-mail : <u>cuibx@lsis.com.cn</u>

 LSIS constantly endeavors to improve its product so that information in this manual is subject to change without notice.
 © 2010 LSIS Co., Ltd All Rights Reserved.